Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Combustion and Flamearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Combustion and Flame
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles

Authors: Pawan Kumar Ojha; Raktim Maji; Srinibas Karmakar;

Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles

Abstract

Abstract The present investigation deals with the droplet combustion characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles at various particle loadings (0.25%, 1%, 2.5%, 5%, 7.5%, and 10% by weight). Characterization of pre-burnt particles in terms of particle size, morphology, and elemental boron content have been carried out using standard material characterization techniques such as SEM, TEM, XRD and TGA. The droplet burning process has been recorded using a high-speed imaging system. The diameter regression profiles show distinctly different characteristics for amorphous and crystalline particles loaded droplets. Amorphous particles loaded droplets show comparatively smooth regression with minor puffing coupled with shape oscillations at the early stage and micro-explosions at the later stage whereas the crystalline particles loaded droplets show sudden ejections and high-intensity micro-explosions. The morphology of the particle (crystallinity) is considered to be responsible for this difference in burning behaviour. A porous, permeable agglomerate shell forms in case of amorphous boron loaded droplet whereas a densely packed, impermeable agglomerate shell forms in case of crystalline boron loaded droplets during the early stage of burning. The micrographs of post-burning residues indeed reveal that blow holes are present in the agglomerate even at individual particle level for amorphous boron loaded case whereas there are no such blow holes present in crystalline boron loaded case. Thermograms, true colour images of flame and emission spectra show that the amorphous boron particles burn better than their crystalline counterpart.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 1%
Top 10%
Top 10%