
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit

handle: 11697/167653
Model based control of the inlet pressure of a sliding vane rotary expander operating in an ORC-based power unit
Abstract Sliding vane rotary expanders (SVREs) are widely used in organic Rankine cycle (ORC)-based power units for low-grade heat recovery because of their capability to deal with severe off-design working conditions. In particular, the speed of SVREs is a very effective operating parameter, together with the speed of the pump, to regulate the recovery unit and to lead the involved components in an acceptable operating behaviour when they are far from the design conditions. In this study, a control strategy based on the variation in revolution speed of a SVRE was developed, where the inlet pressure of the expander is the main controlled property, which must be verified when the flow rate of the working fluid is changed to match the thermal power recovery at the hot source. In fact, pressure level control is a key point of the recovery unit for thermodynamic reasons and for the safety and reliability of the expander and, more generally, of the whole recovery unit. The proposed control strategy is based on an original theoretical procedure that relates the expander speed, inlet pressure, volumetric efficiency, and working fluid mass flow rate in an analytical form. This analytical formulation is widely nonlinear and is simplified for use as a tool for the model-based control of the inlet expander pressure. An experimental activity performed on a SVRE operating in an ORC-based power unit, fed by the exhaust gases of a supercharged diesel engine, was the base of the analytical formulation. This provided the possibility of deriving a simplified model-based control of the expander inlet pressure and assessing its effectiveness and limits during off-design conditions. Higher expander global efficiencies were obtained (up to 45%), allowing a greater mechanical energy recovery (up to 2 kW).
- University of L'Aquila Italy
ORC control strategy; Expander speed variation; Sliding vane rotary expander; Volumetric efficiency; Waste heat recovery;
ORC control strategy; Expander speed variation; Sliding vane rotary expander; Volumetric efficiency; Waste heat recovery;
9 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
