
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Finite element analysis of hydrogen retention in ITER plasma facing components using FESTIM

handle: 10138/309023
Finite element analysis of hydrogen retention in ITER plasma facing components using FESTIM
The behaviour of hydrogen isotopes in ITER monoblocks was studied using the code FESTIM (Finite Element Simulation of Tritium In Materials) which is introduced in this publication. FESTIM has been validated by reproducing experimental data and the Method of Manufactured Solutions was used for analytical verification. Following relevant plasma scenarios, both transient heat transfer and hydrogen isotopes (HIs) diffusion have been simulated in order to assess HIs retention in monoblocks. Relevant materials properties have been used. Each plasma cycle is composed of a current ramp up, a current plateau, a current ramp down and a resting phase before the following shot. 100 cycles are simulated. The total HIs inventory in the tokamak during resting phases reaches 1.8×10−3mg whereas during the implantation phases it keeps increasing as a power law of time. Particle flux on the cooling channel of the monoblock is also computed. The breakthrough time is estimated to be t=1×105s which corresponds to 24 cycles. Relevance of 2D modelling has been demonstrated by comparing the total HIs inventory obtained by 2D and 1D simulations. Using 1D simulations, a relative error is observed compared to 2D simulations which can reach -25% during the resting phase. The error during implantation phases keeps increasing. Keywords: Fusion, Tritium, Finite elements, Plasma facing components, Hydrogen isotopes
[CHIM.MATE] Chemical Sciences/Material chemistry, TK9001-9401, [CHIM.MATE]Chemical Sciences/Material chemistry, [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, 620, Physical sciences, Nuclear engineering. Atomic power, [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation
[CHIM.MATE] Chemical Sciences/Material chemistry, TK9001-9401, [CHIM.MATE]Chemical Sciences/Material chemistry, [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, 620, Physical sciences, Nuclear engineering. Atomic power, [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation
7 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
