Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Sensors Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Sensors Journal
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of Linear Magnetic Position Sensor Used in Permanent Magnet Linear Machine With Consideration of Manufacturing Tolerances

Authors: Sarbajit Paul; Junghwan Chang; Arvind Rajan; Subhas Mukhopadhyay;

Design of Linear Magnetic Position Sensor Used in Permanent Magnet Linear Machine With Consideration of Manufacturing Tolerances

Abstract

This paper proposes the design of a linear magnetic position sensor (LMPS) to detect the mover position of the permanent magnet linear synchronous machines (PMLSMs). The working principle of the LMPS is based on the well-known Hall-Effect. The Hall-Effect-based design of LMPS is considered because it provides a low cost and relatively harsh environment susceptible alternative for the position detection for long track PMLSM system. The initial design was performed using 3D-finite element analysis and genetic algorithm-based deterministic optimization. Based on the initial model, four LMPS were manufactured and tested under the output constraint of peak flux density > 0.1T and total harmonic distortion < 3%. From the test results, it is concluded that the manufactured LMPS suffered significant deviation in output compared to the simulation model. These anomalies arise because of the manufacturing tolerances. To further improve the design and manufacturing process of the LMPS considering the effect of tolerance, a reliability-based robust design optimization (RBRDO) of the LMPS is proposed. The results of RBRDO confirms its usefulness for the design process of the LMPS in terms of undesired design non-compliance cost and great robustness without sacrificing the accuracy of the output signal.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%