Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-INSA Toulousearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSA Toulouse
Article . 2013
Data sources: HAL-INSA Toulouse
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improvement of buildings energy efficiency: Comparison, operability and results of commissioning tools

Authors: Ginestet, Stéphane; Marchio, Dominique; Morisot, Olivier;

Improvement of buildings energy efficiency: Comparison, operability and results of commissioning tools

Abstract

Mainly published to reduce greenhouse gases emissions, new building regulations, leads to a constant improvement of building components such as building envelopes and static insulation. Although, the effectiveness and the behaviour of the air-conditioning plants, validated by commissioning procedures, affect greatly the energy needs in buildings, through ventilation requirements. The main work of Annex 40 of the International Agency of the Energy reports on "Commissioning of Building HVAC systems for Improved Energy Performance". The retro- and on-going commissioning of existing buildings HVAC systems can be achieved using many tools. In this annex, we focus on three which have several objectives and intervene in different phases of the commissioning process. One leads to the detection of faults whereas the others contribute to energy consumption evaluation. This paper presents a critical analysis of the various tools used and evaluates the potential of each tool in the commissioning phases under consideration, in order to determine the most convenient ones for the project in question. The work presented in this paper allows providing a helpful advice to the energy service company or to the technical and research institutes to determine the most adequate tool in terms of number of potential detected faults, precision in energy savings evaluation, and end-user's assessment. A critical analysis is presented to evaluate three of these tools and apply them to a real building. It appears clearly that the PECI Guide, developed for new construction, is very useful in retro-commissioning procedures. Moreover, Emma-CTA and its new versions (CITE-AHU, etc.) represent excellent fault detection tools and diagnosis tools of AHU. For energy savings, the IMPVP tends to become an international standard in measurement and verifications procedures for the ESCO, in order to evaluate energy savings following retrofit. The main issue of our work is to evaluate the operability, potential, time consumed, and results of these tools when used by the HVAC operation staff.

Country
France
Keywords

690, [ SDE.DEV-DUR ] Environmental Sciences/domain_sde.dev-dur, [SHS.ARCHI]Humanities and Social Sciences/Architecture, space management, 620, 004, [ SHS.ARCHI ] Humanities and Social Sciences/Architecture, space management, Energy efficiency, [SHS.ARCHI]Humanities and Social Sciences/Architecture, space management, Commissioning tools, [SDE.DEV-DUR]Environmental Sciences/domain_sde.dev-dur, [SDE.DEV-DUR] Environmental Sciences/domain_sde.dev-dur, [SHS.ARCHI] Humanities and Social Sciences/Architecture, space management, Operability on existing buildings

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%