
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Chemical Abundances of Eight Highly-extincted Milky Way Planetary Nebulae*

Chemical Abundances of Eight Highly-extincted Milky Way Planetary Nebulae*
Abstract Low- and intermediate-mass (0.8 M ⊙ < M < 8 M ⊙) stars that evolve into planetary nebulae (PNe) play an important role in tracing and driving Galactic chemical evolution. Spectroscopy of PNe enables access to both the initial composition of their progenitor stars and products of their internal nucleosynthesis, but determining accurate ionic and elemental abundances of PNe requires high-quality optical spectra. We obtained new optical spectra of eight highly-extincted PNe with limited optical data in the literature using the Low Resolution Spectrograph 2 on the Hobby–Eberly Telescope. Extinction coefficients, electron temperatures and densities, and ionic and elemental abundances of up to 11 elements (He, N, O, Ne, S, Cl, Ar, K, Fe, Kr, and Xe) are determined for each object in our sample. Where available, astrometric data from Gaia eDR3 is used to kinematically characterize the probability that each object belongs to the Milky Way's thin disk, thick disk, or halo. Four of the PNe show kinematic and chemical signs of thin disk membership, while two may be members of the thick disk. The remaining two targets lack Gaia data, but their solar O, Ar, and Cl abundances suggest thin disk membership. Additionally, we report the detection of broad emission features from the central star of M 3–35. Our results significantly improve the available information on the nebular parameters and chemical compositions of these objects, which can inform future analyses.
- University of West Georgia United States
- The University of Texas at Austin United States
- University of West Georgia United States
Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
