Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Toxico...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Toxicology and Chemistry
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interactive Metal Mixture Toxicity to Daphnia magna Populations as an Emergent Property in a Dynamic Energy Budget Individual-Based Model

Authors: Simon Hansul; Andreas Fettweis; Erik Smolders; Karel De Schamphelaere;

Interactive Metal Mixture Toxicity to Daphnia magna Populations as an Emergent Property in a Dynamic Energy Budget Individual-Based Model

Abstract

Abstract Environmental risk assessment of metal mixtures is challenging due to the large number of possible mixtures and interactions. Mixture toxicity data cannot realistically be generated for all relevant scenarios. Therefore, methods for prediction of mixture toxicity from single-metal toxicity data are needed. We tested how well toxicity of Cu-Ni-Zn mixtures to Daphnia magna populations can be predicted based on the Dynamic Energy Budget theory with an individual-based model (DEB-IBM), assuming non-interactivity of metals on the physiological level. We exposed D. magna populations to Cu, Ni, and Zn and their mixture at a fixed concentration ratio. We calibrated the DEB-IBM with single-metal data and generated blind predictions of mixture toxicity (population size over time), with account for uncertainty. We compared the predictive performance of the DEB-IBM with respect to mixture effects on population density and population growth rates with that of two reference models applied on the population level, independent action and concentration addition. Our inferred physiological modes of action (pMoA) differed from literature-reported pMoAs, raising the question of whether this is a result of different model selection approaches, intraspecific variability, or whether different pMoAs might actually drive toxicity in a population context. Observed mixture effects were concentration- and endpoint-dependent. The independent action was overall more accurate than the concentration addition but concentration addition-predicted effects on population growth rate were slightly better. The DEB-IBM most accurately predicted effects on 6-week density, including antagonistic effects at high concentrations, which emerged from non-interactivity at the physiological level. Mixture effects on initial population growth rate appear to be more difficult to predict. To explain why model accuracy is endpoint-dependent, relationships between individual-level and population-level endpoints should be illuminated. Environ Toxicol Chem 2021;40:3034–3048. © 2021 SETAC

Related Organizations
Keywords

Zinc, Daphnia, Metals, Animals, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%