
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition

doi: 10.3390/app10186154
A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition
In this paper, a conceptual investigation of the interface between wireless power devices and a retina complementary metal oxide semiconductor (CMOS) neuron integrated circuit (IC) have been presented. The proposed investigation consists of three designs: design-I, design-II, and design-III. Design-I involves a slotted loop monopole antenna as per American National Standards Institute (ANSI) guidelines, which achieve an ultra-wide band ranging from 3.1 GHz to 10.6 GHz. The biocompatible antenna is made on silicon-nitride substrate using on-wafer packaging technology and it is used as a receiver device. The performance of antenna provides a wideband, sufficient power to receive, and low losses due to the avoidance of printed circuit board (PCB) fabrication. A CMOS based multi-stack power harvesting circuit achieves the output power ranging from 4 mW to 2.7 W and corresponds from the selected Radio Frequency (RF) bands of loop antenna is exhibited in design-II. The power efficiency of 40% to 82%, with respect to output powers of 4 mW to 2.7 W, is achieved. Design-III includes a CMOS based retina neuron circuit that employs a dynamic feedback technique and support to achieve the number of read-out spikes. At the end of the interface between wireless power devices and a CMOS retina neuron IC, 50 mV read-out spikes are achieved, with varying light intensity, from 0 mW/cm2 to 2 mW/cm2. The proposed design-II and design-III are implemented and fabricated using commercial CMOS 0.065 µm, Samsung process. The antenna and RF power harvesting IC could be placed on a contact lens platform while retina neuron IC can be implanted after ganglions cells inside the eye. The antenna and harvesting IC are physically connected to the retina circuit in the form of light. This conceptual investigation could support medical professionals in achieving an interfacing approach to restore the image visualization.
- National Institute of Technology Karnataka India
- Inje University Korea (Republic of)
- National Institute of Technology Karnataka India
- Inje University Korea (Republic of)
Technology, QH301-705.5, retina neuron, T, Physics, QC1-999, RF power harvesting, wireless power devices, on-wafer antenna, image acquisition, Engineering (General). Civil engineering (General), Chemistry, integrated circuit (IC), CMOS (complementary metal oxide semiconductor), TA1-2040, Biology (General), QD1-999
Technology, QH301-705.5, retina neuron, T, Physics, QC1-999, RF power harvesting, wireless power devices, on-wafer antenna, image acquisition, Engineering (General). Civil engineering (General), Chemistry, integrated circuit (IC), CMOS (complementary metal oxide semiconductor), TA1-2040, Biology (General), QD1-999
13 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
