Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2011
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/23921...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What is Happening with Regards to Thin-Film Photovoltaics?

Authors: Bolko von Roedern;

What is Happening with Regards to Thin-Film Photovoltaics?

Abstract

The advances and promises of thin-film photovoltaics (PV) are much discussed these days, typically using the viewpoint that a picked technology and process approach would provide “the” solution to many problems experienced implementing PV commercialization. In 2009, a thin-film PV company, First Solar, garnered world-leadership as a PV company, being the first company to produce or ship more than 1 GW of PV modules in a single year. This makes it timely to discuss the advantages and limitations of thin-film PV technology, as compared to the currently prevailing crystalline Si PV industry. Traditionally, the following technologies are considered constituting “thin-film PV:” 1. CdTe PV 2. CIGS PV (or copper-indium-gallium diselenide) 3. a-Si:H (and nc-Si:H nanocrystalline or “micromorph” silicon films) 4. less than 50 micron thick crystalline Si films In the amorphous silicon (a-Si:H) based category, several approaches are pursued, ranging from amorphous silicon single junction modules to spectrum splitting multijunction cell structures using either a-SiGe:H cell absorbers or a-Si:H/nc-Si:H multijunctions. Pros and cons will be given for these different approaches that lead to this multitude of device structures. It is argued that as long as the advantages of the aforementioned materials are not understood, it would be difficult to “design” materials for more efficient solar cell operation. This review will recap what is currently known about these materials and solar cell devices, keeping in mind that there will always be some unexpected “surprises,” while there were many other approaches that did not result in anticipated cell/module performance improvements. This knowledge leads the author to ask the following question: “Was improper implementation or inadequate process choice responsible for the lack of solar cell/module performance improvement, or was the expectation for improved device performance or decreased device cost simply not warranted?” The chapter of this book is written such as to not prejudge an outcome, i.e., an a priori assumption that a given measure would result in a commensurate expected performance improvement. The impact (i) of an improvement is broken down into probability (p) of achieving a projected improvement times the effectiveness (e) of such improvement, where

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities