
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved photovoltaic properties of amorphous silicon thin-film solar cells with an un-doped silicon oxide layer

Improved photovoltaic properties of amorphous silicon thin-film solar cells with an un-doped silicon oxide layer
Abstract This paper proposes the use of undoped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) deposited on the n-μc-Si:H layer of amorphous silicon single-junction superstrate configuration thin-film solar cells produced through 40 MHz very high frequency plasma-enhanced chemical vapor deposition. Raman spectroscopy and optoelectronic analyses of the undoped μc-SiOx:H thin film revealed that adding a small amount of oxygen into a μc-network results in a low optical absorption, wide band gap, high optical band gap E04, high refractive index, reasonable conductivity, and crystalline volume fraction, which are advantageous properties in solar cells. Compared with a standard cell, the current density–voltage (J–V) characteristics of the cell with an undoped μc-SiOx:H/n-μc-Si:H structure showed an enhancement in short-circuit current density Jsc from 13.32 to 13.60 mA/cm2, and in conversion efficiency from 8.53% to 8.61%. The increased Jsc mechanism can be attributed to an improved light-trapping capability in the long wavelength range between 510 and 660 nm, as demonstrated by the external quantum efficiency.
- ITRI International United States
- Industrial Technology Research Institute Taiwan
- ITRI International United States
7 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
