Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Magnetic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Magnetic Resonance
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite

Authors: Baltzar Stevensson; Renny Mathew; Yang Yu; Mattias Edén;

Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite

Abstract

The analysis of S{I} recoupling experiments applied to amorphous solids yields a heteronuclear second moment M(2)(S-I) that represents the effective through-space dipolar interaction between the detected S spins and the neighboring I-spin species. We show that both M(2)(S-I) and M(2)(I-S) values are readily accessible from a sole S{I} or I{S} experiment, which may involve either S or I detection, and is naturally selected as the most favorable option under the given experimental conditions. For the common case where I has half-integer spin, an I{S} REDOR implementation is preferred to the S{I} REAPDOR counterpart. We verify the procedure by (23)Na{(31)P} REDOR and (31)P{(23)Na} REAPDOR NMR applied to Na(2)O-CaO-SiO(2)-P(2)O(5) glasses and biomimetic hydroxyapatite, where the M(2)(P-Na) values directly determined by REAPDOR agree very well with those derived from the corresponding M(2)(Na-P) results measured by REDOR. Moreover, we show that dipolar second moments are readily extracted from the REAPDOR NMR protocol by a straightforward numerical fitting of the initial dephasing data, in direct analogy with the well-established procedure to determine M(2)(S-I) values from REDOR NMR experiments applied to amorphous materials; this avoids the problems with time-consuming numerically exact simulations whose accuracy is limited for describing the dynamics of a priori unknown multi-spin systems in disordered structures.

Related Organizations
Keywords

Durapatite, Biomimetics, Silicates, Sodium, Biocompatible Materials, Nuclear Magnetic Resonance, Biomolecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Average