Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical Model and Sigma Point Kalman Filter Based Online Oriented Battery Model

Authors: E. Miguel; Gregory L. Plett; M. Scott Trimboli; I. Lopetegi; L. Oca; U. Iraola; E. Bekaert;

Electrochemical Model and Sigma Point Kalman Filter Based Online Oriented Battery Model

Abstract

This paper presents a reduced-order electrochemical battery model designed for the online implementation of battery control systems. The model is based on porous-electrode and concentrated-solution theory frameworks and is able to predict voltage as well as the internal electrochemical variables of a battery. The reduction of the model leads to a physics-based one-dimensional discrete-time state-space reduced-order model (ROM), which is especially beneficial for online systems. Models optimized around different operational setpoints are combined to predict cell variables over a wide range of temperatures and state of charges (SOCs) using the output-blending method. A sigma-point Kalman filter is further used to manage inaccuracies generated by the reduction process and experimental-related issues such as measurement error (noise) in the current and voltage sensors. The state-estimation accuracies are measured against a full-order model (FOM) developed in COMSOL. The whole system is able to track the internal variables of the cell, as well as the cell voltage and SOC with very high accuracy, demonstrating its suitability for an online battery control system.

Keywords

Batteries, electrochemical devices, battery management systems, Electrical engineering. Electronics. Nuclear engineering, Kalman filters, TK1-9971

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities