Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rotordynamic Analysis of Rotor–Stator Rub Using Rough Surface Contact

Authors: Philip Varney; Itzhak Green;

Rotordynamic Analysis of Rotor–Stator Rub Using Rough Surface Contact

Abstract

Undesirable rotor–stator rub is frequently observed in rotordynamic systems, and has been the subject of many investigations. Most of these studies employ a simple piecewise-smooth linear-elastic contact model (LECM), where the rotor switches between noncontacting and contacting operation once the clearance is exceeded (various complications have been incorporated, though the essential model premises endure). Though useful as a first step, the LECM relies on an arcane contact stiffness estimate, and therefore does not emulate the actual contacting surfaces. Consequentially, the LECM fails to elucidate how real surface parameters influence contact severity and surface durability. This work develops a novel model for rotor–stator rub which is commensurate with reality by treating the surfaces as a collection of stochastically distributed asperities. Specifically, the elastoplastic Jackson–Green (JG) rough surface contact model is used to calculate the quasistatic contact force as a function of rotor displacement, where bulk material deformation and surface cumulative damage are ignored. A simple exponential fit of the contact force is proposed to reduce computational burden associated with evaluating the JG rough surface contact model at each simulation time step. The rotor's response using the LECM and JG rough surface contact model is compared via shaft speed bifurcations and orbit analysis. Significant differences are observed between the models, though some similarities exist for responses with few contacts per rotor revolution.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%