Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wetlands Ecology and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wetlands Ecology and Management
Article . 2007 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wetlands Ecology and Management
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A simulation model for nitrogen retention in a papyrus wetland near Lake Victoria, Uganda (East Africa)

Authors: A. Dardona; A. A. van Dam; Frank Kansiime; Peter Kelderman;

A simulation model for nitrogen retention in a papyrus wetland near Lake Victoria, Uganda (East Africa)

Abstract

Papyrus wetlands around Lake Victoria, East Africa play an important role in the nutrient flows from the catchment to the lake. A dynamic model for nitrogen cycling was constructed to understand the processes contributing to nitrogen retention in the wetland and to evaluate the effects of papyrus harvesting on the nitrogen absorption capacity of the wetlands. The model had four layers: papyrus mat, water, sludge and sediment. Papyrus growth was modelled as the difference between nitrogen uptake and loss. Nitrogen uptake was modelled with a logistic equation combined with a Monod-type nitrogen limitation. Nitrogen compartments were papyrus plants, organic material in the floating mat; and total ammonia, nitrate and organic nitrogen in the water, sludge and sediment. Apart from the uptake and decay rates of the papyrus, the model included sloughing and settling of mat material into the water, mineralization of organic matter, and nitrification and diffusion of dissolved inorganic nitrogen. Literature data and field measurements were used for parameterization. The model was calibrated with data from Kirinya wetland in Jinja, Uganda which receives effluent from a municipal wastewater treatment plant. The model simulated realistic concentrations of dissolved nitrogen with a stable biomass density of papyrus and predicted accumulation of organic sludge in the wetland. Assuming that this sludge is not washed out of the wetland, the overall nitrogen retention of the wetland over a three-year period was 21.5 g N m−2 year−1 or about 25% of input. Harvesting 10, 20 and 30% of the papyrus biomass per year increased nitrogen retention capacity of the wetland to 32.3, 36.8 and 38.1 g m−2 year−1, respectively. Although the nutrient flows estimated by the model are within the ranges found in other papyrus wetlands, the model could be improved with regard to the dynamics of detrital nitrogen. Actual net retention of nitrogen in the sludge is likely to be lower than 21.5 g N m−2 year−1 because of flushing out of the sludge to the lake during the rainy season.

Keywords

Aquatic Science, Management, Monitoring, Policy and Law, Ecology, Evolution, Behavior and Systematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
hybrid