Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A high-efficiency wideband coupler for nanosecond-level pulsed current injection

Authors: Yi Zhou; Yan-zhao Xie; Dao-zhong Zhang;

A high-efficiency wideband coupler for nanosecond-level pulsed current injection

Abstract

Pulsed current injection (PCI), as a conducted vulnerability testing technique under nanosecond-level transient electromagnetic disturbance (TED), has gained great attention recently. Many kinds of TEDs, e.g., high-altitude electromagnetic pulse, very fast transient overvoltage, and electrical fast transients, have very fast rise time as well as pretty slow decay, whose frequency spectrum may cover a very wideband. Therefore, one of the challenges is that the existing inductive couplers cannot interact with the equipment under test (EUT) over the wideband efficiently, and consequently, they are inadequate to inject the proper disturbance at ports of EUT in PCI tests. To address this problem, a high-efficiency wideband PCI coupler is proposed in this paper. The coupling performance is analyzed theoretically based on the distributed-parameter model of an inductive coupler. By using the composited ferrites instead of the simplex Ni–Zn ferrites, the inductive coupling is enhanced. The capacitive coupling is also enhanced to improve the high-frequency performance by exploiting the distributed tubular winding. A PCI coupler with the dimension of 30 × 10 × 10 cm3 is built to be validated experimentally. The 3 dB bandwidth has been improved from 421 kHz–14 MHz to 77 kHz–39 MHz, which indicates that the coupler can be applied efficiently over the frequency range of interest for PCI tests.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average