
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of Stress State During Cement Hardening and Its Effect on Failure of Cement Sheath in Shale Gas Wells

doi: 10.1115/1.4052824
Investigation of Stress State During Cement Hardening and Its Effect on Failure of Cement Sheath in Shale Gas Wells
Abstract Consideration of initial stress state after cement hardening provides a vital basis for the prediction of cement failure, which has been overlooked in previously published methodologies partly due to the difficulties in examining this problem rationally. In the present study, the hoop stress at casing-cement interface during cement hardening is investigated experimentally based on the full-scale casing-cement sheath-formation system (CCFS) facility, which is equipped with the real-time stress-strain measurement capability. The hoop stress at casing-cement interface during cement hardening drops sharply, rather than equating with the initial annulus pressure of cement slurry. It presents a higher drawdown under higher annulus pressure and thinner casing, and a lower drawdown under elastic cement slurry and thicker cement sheath. Furthermore, an analytical model taking the effect of cement hardening into account is developed to predict the integrity of cement sheath. Reliability of the model is verified by comparison with field observations. Excellent agreements are observed. The results illustrate that the tensile cracks are likely to occur at the inner cement (inner surface of cement sheath) by the effect of cement hardening, since the hoop stress at inner cement during cement hardening drops greatly and even becomes tensile. A detailed sensitivity analysis illustrates that an elastic cement slurry with a lower elastic modulus works more effectively, which can resolve the sustained casing pressure (SCP) problem in shale gas wells.
- China University of Petroleum, Beijing China (People's Republic of)
- Oklahoma City University United States
- Shandong University of Science and Technology China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
- Oklahoma City University United States
18 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 1965IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
