Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace at the Univer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iridium-4'-Phenyl-Terpyridine, Ruthenium-Triphos, and Ruthenium-N-Triphos Complexes as Homogeneous Catalysts for Hydrogenation of Biomass-Derived Substrates in Aqueous Acidic Medium at High Temperature

Authors: Latifi, Elnaz;

Iridium-4'-Phenyl-Terpyridine, Ruthenium-Triphos, and Ruthenium-N-Triphos Complexes as Homogeneous Catalysts for Hydrogenation of Biomass-Derived Substrates in Aqueous Acidic Medium at High Temperature

Abstract

In order to convert overfunctionalized biomass-derived compounds into chemicals and fuels a catalyst is needed to effect hydrodeoxygenation (HDO), i.e., the combination of iterative acid-catalyzed dehydration and metal catalyzed hydrogenations/hydrogenolysis to decrease the content of oxygen. To meet this goal, the complexes [(4'-Ph-terpy)Ir(OTf)3] (4'-Ph-terpy = 4'-phenyl-2,2':6'6"-terpyridine) and [Ru(triphos)(CH3CN)3](OTf)2 (triphos = 1,1,1-tris(diphenylphosphinomethyl) ethane) were prepared and evaluated as water-, acid- and high-temperature stable homogeneous catalysts for the hydrogenation of biomass-derived 2,5-hexanedione and 2,5-dimethylfuran (2,5-DMF) to value added chemicals. At T ≥ 175 °C the iridium system decomposed to a combination of a highly active heterogeneous Ir0 on the reactor walls and an inactive [M(4'-Ph-terpy)2]n+ compound (M = Fe, Ni, Ru, Ir; n = 2, 3) characterized by ESI-MS and single crystal X-ray crystallography, in which the source of the Fe and Ni was metal leaching from the 316SS reactor body. [Ru(triphos)(CH3CN)3](OTf)2 on the other hand was an effective homogeneous catalyst for the hydrogenation of 2,5-hexanedione and 2,5-DMF at temperatures between 150 and 200 °C. This catalyst became deactivated by formation of the bridging compound [Ru2(μ-OH)3(triphos)2](OTf), but could be reactivated by the addition of an acid co-catalyst. The hydrogenation of 2,5-hexanedione showed a first order rate dependence on hydrogen pressure as determined by direct hydrogen uptake rate measurements. With furfuryl alcohol — a more challenging substrate — only marginal conversions to hydrogenated products were observed. In an attempt to improve the catalyst activity by improving the water solubility, [Ru(NCCH3)3(N-triphos)](CF3SO3)2 was prepared and was able to convert furfuryl alcohol to 1,4-pentanediol in modest yield (26%), but still exhibited lower than desired water solubility under either neutral or acidic conditions at room temperature.

Country
Canada
Related Organizations
Keywords

Furfuryl alcohol, High pressure, Kinetics, Hydrodeoxygenation, Hydrogenation, 2,5-dimethylfuran, Iridium, Triphos, Ruthenium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities