
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Code files for "Climate impacts from North American boreal forest fires"
Code files for "Climate impacts from North American boreal forest fires"
Computer code as part of the publication in review: "Climate impacts from North American boreal forest fires" Max J. van Gerrevink1, Sander Veraverbeke1,2, Sol Cooperdock3, Stefano Potter3, Qirui Zhong1,4 Michael Moubarak5, Scott J. Goetz6, Michelle C. Mack7, James T. Randerson8, Nick Schutgens1, Merritt R. Turetsky9, Guido R. van der Werf10, and Brendan M. Rogers3 1Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands 2School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom 3Woodwell Climate Research Center, Falmouth, MA, USA 4College of Urban and Environmental Sciences, Peking University, Beijing, China 5Hamilton College, Hamilton, NY, USA 6School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 7Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA 8Department of Earth System Science, University of California, Irvine, CA, USA 9Renewable and Sustainable Energy Institute, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA 10Meteorology & Air Quality Group, Wageningen University and Research, Wageningen, The Netherlands Correspondence to: Max J. van Gerrevink (m.j.van.gerrevink@vu.nl) Files contain the computer code used to compute the climate radiative forcing from fire. The computer code is spilt into 7 different scripts: Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_boxmodel.py Mapping and uncertainty of Well-mixed greenhouse gasses, precursors, and aerosol radiative forcing : Radiative_forcing_GHG_precursors_aerosols_Mapping_and_uncertainty.py Permafrost greenhouse gas emissions radiative forcing : Radiative_Forcing_Permafrost_GHG.py Changes in surface albedo radiative forcing : Radiative_Forcing_Albedo_change.py Uncertainty in surface albedo radiative forcing : Radiative_Forcing_Albedo_change_uncertainty.py Vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery.py Uncertainty in vegetation recovery radiative forcing : Radiative_Forcing_vegetation_recovery_uncertainty.py * The sensitivity analysis for Permafrost greenhouse gas emissions is included in the Radiative_Forcing_Permafrost_GHG.py script. Additionally, input files for atmospheric concentrations and impulse response function data are included as CSV files.
- Wageningen University & Research Netherlands
- Northern Arizona University United States
- Northern Arizona University United States
- Hamilton College United States
- Hamilton College United States
Climate change, Fires, Radiative Forcing
Climate change, Fires, Radiative Forcing
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
