- home
- Advanced Search
- Energy Research
- 13. Climate action
- 15. Life on land
- 6. Clean water
- CN
- EC
- Aurora Universities Network
- Energy Research
- 13. Climate action
- 15. Life on land
- 6. Clean water
- CN
- EC
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | Integrated assessment of ...UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE)Authors:Dabo Guan;
Zhuguo Ma;Dabo Guan
Dabo Guan in OpenAIREZhifu Mi;
Zhifu Mi; +7 AuthorsZhifu Mi
Zhifu Mi in OpenAIREDabo Guan;
Zhuguo Ma;Dabo Guan
Dabo Guan in OpenAIREZhifu Mi;
Zhifu Mi;Zhifu Mi
Zhifu Mi in OpenAIREHeran Zheng;
Heran Zheng
Heran Zheng in OpenAIREJing Meng;
Jing Meng
Jing Meng in OpenAIREYuli Shan;
Yuli Shan
Yuli Shan in OpenAIREHeike Schroeder;
Jibo Ma; Chongmao Li; Chongmao Li;Heike Schroeder
Heike Schroeder in OpenAIREdoi: 10.1002/2017ef000571
AbstractBecause of its low level of energy consumption and the small scale of its industrial development, the Tibet Autonomous Region has historically been excluded from China's reported energy statistics, including those regarding CO2 emissions. In this paper, we estimate Tibet's energy consumption using limited online documents, and we calculate the 2014 energy‐related and process‐related CO2 emissions of Tibet and its seven prefecture‐level administrative divisions for the first time. Our results show that 5.52 million tons of CO2 were emitted in Tibet in 2014; 33% of these emissions are associated with cement production. Tibet's emissions per capita amounted to 1.74 tons in 2014, which is substantially lower than the national average, although Tibet's emission intensity is relatively high at 0.60 tons per thousand yuan in 2014. Among Tibet's seven prefecture‐level administrative divisions, Lhasa City and Shannan Region are the two largest CO2 contributors and have the highest per capita emissions and emission intensities. The Nagqu and Nyingchi regions emit little CO2 due to their farming/pasturing‐dominated economies. This quantitative measure of Tibet's regional CO2 emissions provides solid data support for Tibet's actions on climate change and emission reductions.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | Integrated assessment of ...UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE)Authors:Dabo Guan;
Zhuguo Ma;Dabo Guan
Dabo Guan in OpenAIREZhifu Mi;
Zhifu Mi; +7 AuthorsZhifu Mi
Zhifu Mi in OpenAIREDabo Guan;
Zhuguo Ma;Dabo Guan
Dabo Guan in OpenAIREZhifu Mi;
Zhifu Mi;Zhifu Mi
Zhifu Mi in OpenAIREHeran Zheng;
Heran Zheng
Heran Zheng in OpenAIREJing Meng;
Jing Meng
Jing Meng in OpenAIREYuli Shan;
Yuli Shan
Yuli Shan in OpenAIREHeike Schroeder;
Jibo Ma; Chongmao Li; Chongmao Li;Heike Schroeder
Heike Schroeder in OpenAIREdoi: 10.1002/2017ef000571
AbstractBecause of its low level of energy consumption and the small scale of its industrial development, the Tibet Autonomous Region has historically been excluded from China's reported energy statistics, including those regarding CO2 emissions. In this paper, we estimate Tibet's energy consumption using limited online documents, and we calculate the 2014 energy‐related and process‐related CO2 emissions of Tibet and its seven prefecture‐level administrative divisions for the first time. Our results show that 5.52 million tons of CO2 were emitted in Tibet in 2014; 33% of these emissions are associated with cement production. Tibet's emissions per capita amounted to 1.74 tons in 2014, which is substantially lower than the national average, although Tibet's emission intensity is relatively high at 0.60 tons per thousand yuan in 2014. Among Tibet's seven prefecture‐level administrative divisions, Lhasa City and Shannan Region are the two largest CO2 contributors and have the highest per capita emissions and emission intensities. The Nagqu and Nyingchi regions emit little CO2 due to their farming/pasturing‐dominated economies. This quantitative measure of Tibet's regional CO2 emissions provides solid data support for Tibet's actions on climate change and emission reductions.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, Belgium, France, Italy, Netherlands, Netherlands, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SRF-OZO, EC | DOFOCO, NSERC +2 projectsEC| SRF-OZO ,EC| DOFOCO ,NSERC ,EC| GEM-TRAIT ,EC| IMBALANCE-PAuthors: Patrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone; +16 AuthorsTerenzio Zenone
Terenzio Zenone in OpenAIREPatrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone;Terenzio Zenone
Terenzio Zenone in OpenAIREEric Ceschia;
Eric Ceschia
Eric Ceschia in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREXuhui Wang;
F. S. Chapin; Joke Bilcke;Xuhui Wang
Xuhui Wang in OpenAIRESara Vicca;
Michael Obersteiner;Sara Vicca
Sara Vicca in OpenAIREIvan A. Janssens;
Ivan A. Janssens
Ivan A. Janssens in OpenAIREMatteo Campioli;
Shilong Piao; Shilong Piao;Matteo Campioli
Matteo Campioli in OpenAIREDario Papale;
Dario Papale
Dario Papale in OpenAIREYadvinder Malhi;
Yadvinder Malhi
Yadvinder Malhi in OpenAIREMarcos Fernández-Martínez;
Marcos Fernández-Martínez
Marcos Fernández-Martínez in OpenAIRESebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREDavid Olefeldt;
David Olefeldt
David Olefeldt in OpenAIREPlants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, Belgium, France, Italy, Netherlands, Netherlands, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SRF-OZO, EC | DOFOCO, NSERC +2 projectsEC| SRF-OZO ,EC| DOFOCO ,NSERC ,EC| GEM-TRAIT ,EC| IMBALANCE-PAuthors: Patrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone; +16 AuthorsTerenzio Zenone
Terenzio Zenone in OpenAIREPatrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone;Terenzio Zenone
Terenzio Zenone in OpenAIREEric Ceschia;
Eric Ceschia
Eric Ceschia in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREXuhui Wang;
F. S. Chapin; Joke Bilcke;Xuhui Wang
Xuhui Wang in OpenAIRESara Vicca;
Michael Obersteiner;Sara Vicca
Sara Vicca in OpenAIREIvan A. Janssens;
Ivan A. Janssens
Ivan A. Janssens in OpenAIREMatteo Campioli;
Shilong Piao; Shilong Piao;Matteo Campioli
Matteo Campioli in OpenAIREDario Papale;
Dario Papale
Dario Papale in OpenAIREYadvinder Malhi;
Yadvinder Malhi
Yadvinder Malhi in OpenAIREMarcos Fernández-Martínez;
Marcos Fernández-Martínez
Marcos Fernández-Martínez in OpenAIRESebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREDavid Olefeldt;
David Olefeldt
David Olefeldt in OpenAIREPlants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPEAuthors:Nicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; +21 AuthorsXiuchen Wu
Xiuchen Wu in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier;Xiuchen Wu
Xiuchen Wu in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIREP. Di Tommasi;
Christine Moureaux;P. Di Tommasi
P. Di Tommasi in OpenAIREEric Larmanou;
Tanguy Manise; W.W.P. Jans; Luca Vitale;Eric Larmanou
Eric Larmanou in OpenAIREThomas Grünwald;
Vincenzo Magliulo;Thomas Grünwald
Thomas Grünwald in OpenAIREJan Elbers;
Dominique Ripoche;Jan Elbers
Jan Elbers in OpenAIRETiphaine Tallec;
Tiphaine Tallec
Tiphaine Tallec in OpenAIREEric Ceschia;
Anne De Ligne;Eric Ceschia
Eric Ceschia in OpenAIREMartin Wattenbach;
Martin Wattenbach
Martin Wattenbach in OpenAIREBenjamin Loubet;
Benjamin Loubet
Benjamin Loubet in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREChristian Bernhofer;
Christian Bernhofer
Christian Bernhofer in OpenAIREAbstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPEAuthors:Nicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; +21 AuthorsXiuchen Wu
Xiuchen Wu in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier;Xiuchen Wu
Xiuchen Wu in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIREP. Di Tommasi;
Christine Moureaux;P. Di Tommasi
P. Di Tommasi in OpenAIREEric Larmanou;
Tanguy Manise; W.W.P. Jans; Luca Vitale;Eric Larmanou
Eric Larmanou in OpenAIREThomas Grünwald;
Vincenzo Magliulo;Thomas Grünwald
Thomas Grünwald in OpenAIREJan Elbers;
Dominique Ripoche;Jan Elbers
Jan Elbers in OpenAIRETiphaine Tallec;
Tiphaine Tallec
Tiphaine Tallec in OpenAIREEric Ceschia;
Anne De Ligne;Eric Ceschia
Eric Ceschia in OpenAIREMartin Wattenbach;
Martin Wattenbach
Martin Wattenbach in OpenAIREBenjamin Loubet;
Benjamin Loubet
Benjamin Loubet in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREChristian Bernhofer;
Christian Bernhofer
Christian Bernhofer in OpenAIREAbstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United Kingdom, United StatesPublisher:Elsevier BV Authors:Yutao Wang;
Yutao Wang
Yutao Wang in OpenAIREVincent Viguié;
Neil A. Fromer; Zhu Liu; +5 AuthorsVincent Viguié
Vincent Viguié in OpenAIREYutao Wang;
Yutao Wang
Yutao Wang in OpenAIREVincent Viguié;
Neil A. Fromer; Zhu Liu; Zhu Liu; Zhu Liu;Vincent Viguié
Vincent Viguié in OpenAIREDabo Guan;
Jingru Liu; Zhifu Mi;Dabo Guan
Dabo Guan in OpenAIRECities, the core of the global climate change mitigation and strategic low-carbon development, are shelters to more than half of the world population and responsible for three quarters of global energy consumption and greenhouse gas (GHG). This special volume (SV) provides a platform that promotes multi- and inter- disciplinary analyses and discussions on the climate change mitigation for cities. All papers are divided into four themes, including GHG emission inventory and accounting, climate change and urban sectors, climate change and sustainable development, and strategies and mitigation action plans. First, this SV provides methods for constructing emission inventory from both production and consumption perspectives. These methods are useful to improve the comprehensiveness and accuracy of carbon accounting for international cities. Second, the climate change affects urban sectors from various aspects; simultaneously, GHG emissions caused by activities in urban sectors affect the climate system. This SV focuses on mitigation policies and assessment of energy, transport, construction, and service sectors. Third, climate change mitigation of cities is closely connected to urban sustainable development. This SV explores the relationships between climate change mitigation with urbanization, ecosystems, air pollution, and extreme events. Fourth, climate change mitigation policies can be divided into two categories: quantity-based mechanism (e.g., carbon emission trading) and price-based mechanism (e.g., carbon tax). This SV provides experiences of local climate change mitigation all over the world and proposes the city-to-city cooperation on climate change mitigation.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United Kingdom, United StatesPublisher:Elsevier BV Authors:Yutao Wang;
Yutao Wang
Yutao Wang in OpenAIREVincent Viguié;
Neil A. Fromer; Zhu Liu; +5 AuthorsVincent Viguié
Vincent Viguié in OpenAIREYutao Wang;
Yutao Wang
Yutao Wang in OpenAIREVincent Viguié;
Neil A. Fromer; Zhu Liu; Zhu Liu; Zhu Liu;Vincent Viguié
Vincent Viguié in OpenAIREDabo Guan;
Jingru Liu; Zhifu Mi;Dabo Guan
Dabo Guan in OpenAIRECities, the core of the global climate change mitigation and strategic low-carbon development, are shelters to more than half of the world population and responsible for three quarters of global energy consumption and greenhouse gas (GHG). This special volume (SV) provides a platform that promotes multi- and inter- disciplinary analyses and discussions on the climate change mitigation for cities. All papers are divided into four themes, including GHG emission inventory and accounting, climate change and urban sectors, climate change and sustainable development, and strategies and mitigation action plans. First, this SV provides methods for constructing emission inventory from both production and consumption perspectives. These methods are useful to improve the comprehensiveness and accuracy of carbon accounting for international cities. Second, the climate change affects urban sectors from various aspects; simultaneously, GHG emissions caused by activities in urban sectors affect the climate system. This SV focuses on mitigation policies and assessment of energy, transport, construction, and service sectors. Third, climate change mitigation of cities is closely connected to urban sustainable development. This SV explores the relationships between climate change mitigation with urbanization, ecosystems, air pollution, and extreme events. Fourth, climate change mitigation policies can be divided into two categories: quantity-based mechanism (e.g., carbon emission trading) and price-based mechanism (e.g., carbon tax). This SV provides experiences of local climate change mitigation all over the world and proposes the city-to-city cooperation on climate change mitigation.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FREENERGYEC| FREENERGYAuthors:Mingdeng Wei;
Mingdeng Wei
Mingdeng Wei in OpenAIREIrene Cantone;
Qiong Wang; Antonio Abate; +5 AuthorsIrene Cantone
Irene Cantone in OpenAIREMingdeng Wei;
Mingdeng Wei
Mingdeng Wei in OpenAIREIrene Cantone;
Qiong Wang; Antonio Abate; Antonio Abate;Irene Cantone
Irene Cantone in OpenAIREHai-Lei Cao;
Wen Bin Jiao;Hai-Lei Cao
Hai-Lei Cao in OpenAIREJian Lu;
Junming Li;Jian Lu
Jian Lu in OpenAIREAbstractRegulations currently in force enable to claim that the lead content in perovskite solar cells is low enough to be safe, or no more dangerous, than other electronics also containing lead. However, the actual environmental impact of lead from perovskite is unknown. Here we show that the lead from perovskite leaking into the ground can enter plants, and consequently the food cycle, ten times more effectively than other lead contaminants already present as the result of the human activities. We further demonstrate that replacing lead with tin represents an environmentally-safer option. Our data suggest that we need to treat the lead from perovskite with exceptional care. In particular, we point out that the safety level for lead content in perovskite-based needs to be lower than other lead-containing electronics. We encourage replacing lead completely with more inert metals to deliver safe perovskite technologies.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13910-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 441 citations 441 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13910-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FREENERGYEC| FREENERGYAuthors:Mingdeng Wei;
Mingdeng Wei
Mingdeng Wei in OpenAIREIrene Cantone;
Qiong Wang; Antonio Abate; +5 AuthorsIrene Cantone
Irene Cantone in OpenAIREMingdeng Wei;
Mingdeng Wei
Mingdeng Wei in OpenAIREIrene Cantone;
Qiong Wang; Antonio Abate; Antonio Abate;Irene Cantone
Irene Cantone in OpenAIREHai-Lei Cao;
Wen Bin Jiao;Hai-Lei Cao
Hai-Lei Cao in OpenAIREJian Lu;
Junming Li;Jian Lu
Jian Lu in OpenAIREAbstractRegulations currently in force enable to claim that the lead content in perovskite solar cells is low enough to be safe, or no more dangerous, than other electronics also containing lead. However, the actual environmental impact of lead from perovskite is unknown. Here we show that the lead from perovskite leaking into the ground can enter plants, and consequently the food cycle, ten times more effectively than other lead contaminants already present as the result of the human activities. We further demonstrate that replacing lead with tin represents an environmentally-safer option. Our data suggest that we need to treat the lead from perovskite with exceptional care. In particular, we point out that the safety level for lead content in perovskite-based needs to be lower than other lead-containing electronics. We encourage replacing lead completely with more inert metals to deliver safe perovskite technologies.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13910-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 441 citations 441 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13910-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Spain, Russian Federation, Netherlands, Russian FederationPublisher:Public Library of Science (PLoS) Funded by:RSF | Empirical modelling of ba..., EC | EVOCLIMRSF| Empirical modelling of balanced technological and socioeconomic development in the Russian regions ,EC| EVOCLIMAuthors:Savin, Ivan;
Savin, Ivan
Savin, Ivan in OpenAIREDrews, Stefan;
Drews, Stefan
Drews, Stefan in OpenAIREvan den Bergh, Jeroen;
Villamayor-Tomas, Sergio;van den Bergh, Jeroen
van den Bergh, Jeroen in OpenAIREpmid: 35679285
pmc: PMC9182260
Since the onset of the COVID-19 crisis many have opinionated on how it may affect society’s response to climate change. Two key questions here are how COVID-19 is expected to influence climate action by citizens and by the government. We answer these by applying topic modelling to textual responses from a survey of Spanish citizens. The identified topics tend to be more negative than positive, and more optimistic concerning future climate action by citizens. Positive views involve increasing pro-environmental behavior and are more common among younger, higher educated and male respondents as well as among those who perceive climate change as a serious threat or positively assessed COVID-19 confinement. Negative topics express concern that financial resources for climate action will be limited due to a focus on healthcare and economic recovery. In addition, they mention government mismanagement and waste due to use of protective measures like masks and gloves as impediments to effective climate action.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0266979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0266979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Spain, Russian Federation, Netherlands, Russian FederationPublisher:Public Library of Science (PLoS) Funded by:RSF | Empirical modelling of ba..., EC | EVOCLIMRSF| Empirical modelling of balanced technological and socioeconomic development in the Russian regions ,EC| EVOCLIMAuthors:Savin, Ivan;
Savin, Ivan
Savin, Ivan in OpenAIREDrews, Stefan;
Drews, Stefan
Drews, Stefan in OpenAIREvan den Bergh, Jeroen;
Villamayor-Tomas, Sergio;van den Bergh, Jeroen
van den Bergh, Jeroen in OpenAIREpmid: 35679285
pmc: PMC9182260
Since the onset of the COVID-19 crisis many have opinionated on how it may affect society’s response to climate change. Two key questions here are how COVID-19 is expected to influence climate action by citizens and by the government. We answer these by applying topic modelling to textual responses from a survey of Spanish citizens. The identified topics tend to be more negative than positive, and more optimistic concerning future climate action by citizens. Positive views involve increasing pro-environmental behavior and are more common among younger, higher educated and male respondents as well as among those who perceive climate change as a serious threat or positively assessed COVID-19 confinement. Negative topics express concern that financial resources for climate action will be limited due to a focus on healthcare and economic recovery. In addition, they mention government mismanagement and waste due to use of protective measures like masks and gloves as impediments to effective climate action.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0266979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0266979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Keying Wang;
Yongyan Cui; Hongwu Zhang;Keying Wang
Keying Wang in OpenAIREXunpeng Shi;
+2 AuthorsXunpeng Shi
Xunpeng Shi in OpenAIREKeying Wang;
Yongyan Cui; Hongwu Zhang;Keying Wang
Keying Wang in OpenAIREXunpeng Shi;
Jinjun Xue; Zhao Yuan;Xunpeng Shi
Xunpeng Shi in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Keying Wang;
Yongyan Cui; Hongwu Zhang;Keying Wang
Keying Wang in OpenAIREXunpeng Shi;
+2 AuthorsXunpeng Shi
Xunpeng Shi in OpenAIREKeying Wang;
Yongyan Cui; Hongwu Zhang;Keying Wang
Keying Wang in OpenAIREXunpeng Shi;
Jinjun Xue; Zhao Yuan;Xunpeng Shi
Xunpeng Shi in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4119314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 07 May 2021 Malaysia, South Africa, United Kingdom, MalaysiaPublisher:Wiley Funded by:UKRI | Biodiversity and Ecosyste...UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsOliver S. Ashford; Oliver S. Ashford; Robert M. Ewers; Clare L. Wilkinson; Clare L. Wilkinson;Emma Garnett;
Marion Pfeifer; Marion Pfeifer; Stephen R. Hardwick;Emma Garnett
Emma Garnett in OpenAIREMichael Boyle;
Michael Boyle; Michael Boyle; Rachel Isolde Lane-Shaw; Arthur Y. C. Chung; Sarah H. Luke; Sarah H. Luke;Michael Boyle
Michael Boyle in OpenAIRETom M. Fayle;
Tom M. Fayle; Tom M. Fayle; Kalsum M. Yusah;Tom M. Fayle
Tom M. Fayle in OpenAIRETom R. Bishop;
Tom R. Bishop;Tom R. Bishop
Tom R. Bishop in OpenAIRETheodore A. Evans;
Theodore A. Evans; Imogen C. R. Ashford; Michiel van Breugel; Edgar C. Turner; Edgar C. Turner;Theodore A. Evans
Theodore A. Evans in OpenAIREhandle: 2263/84398 , 10044/1/86645
Abstract Logging and habitat conversion create hotter microclimates in tropical forest landscapes, representing a powerful form of localised anthropogenic climate change. It is widely believed that these emergent conditions are responsible for driving changes in communities of organisms found in modified tropical forests, although the empirical evidence base for this is lacking. Here we investigated how interactions between the physiological traits of genera and the environmental temperatures they experience lead to functional and compositional changes in communities of ants, a key organism in tropical forest ecosystems. We found that the abundance and activity of ant genera along a gradient of forest disturbance in Sabah, Malaysian Borneo, was defined by an interaction between their thermal tolerance (CTmax) and environmental temperature. In more disturbed, warmer habitats, genera with high CTmax had increased relative abundance and functional activity, and those with low CTmax had decreased relative abundance and functional activity. This interaction determined abundance changes between primary and logged forest that differed in daily maximum temperature by a modest 1.1°C, and strengthened as the change in microclimate increased with disturbance. Between habitats that differed by 5.6°C (primary forest to oil palm) and 4.5°C (logged forest to oil palm), a 1°C difference in CTmax among genera led to a 23% and 16% change in relative abundance, and a 22% and 17% difference in functional activity. CTmax was negatively correlated with body size and trophic position, with ants becoming significantly smaller and less predatory as microclimate temperatures increased. Our results provide evidence to support the widely held, but never directly tested, assumption that physiological tolerances underpin the influence of disturbance‐induced microclimate change on the abundance and function of invertebrates in tropical landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 07 May 2021 Malaysia, South Africa, United Kingdom, MalaysiaPublisher:Wiley Funded by:UKRI | Biodiversity and Ecosyste...UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsOliver S. Ashford; Oliver S. Ashford; Robert M. Ewers; Clare L. Wilkinson; Clare L. Wilkinson;Emma Garnett;
Marion Pfeifer; Marion Pfeifer; Stephen R. Hardwick;Emma Garnett
Emma Garnett in OpenAIREMichael Boyle;
Michael Boyle; Michael Boyle; Rachel Isolde Lane-Shaw; Arthur Y. C. Chung; Sarah H. Luke; Sarah H. Luke;Michael Boyle
Michael Boyle in OpenAIRETom M. Fayle;
Tom M. Fayle; Tom M. Fayle; Kalsum M. Yusah;Tom M. Fayle
Tom M. Fayle in OpenAIRETom R. Bishop;
Tom R. Bishop;Tom R. Bishop
Tom R. Bishop in OpenAIRETheodore A. Evans;
Theodore A. Evans; Imogen C. R. Ashford; Michiel van Breugel; Edgar C. Turner; Edgar C. Turner;Theodore A. Evans
Theodore A. Evans in OpenAIREhandle: 2263/84398 , 10044/1/86645
Abstract Logging and habitat conversion create hotter microclimates in tropical forest landscapes, representing a powerful form of localised anthropogenic climate change. It is widely believed that these emergent conditions are responsible for driving changes in communities of organisms found in modified tropical forests, although the empirical evidence base for this is lacking. Here we investigated how interactions between the physiological traits of genera and the environmental temperatures they experience lead to functional and compositional changes in communities of ants, a key organism in tropical forest ecosystems. We found that the abundance and activity of ant genera along a gradient of forest disturbance in Sabah, Malaysian Borneo, was defined by an interaction between their thermal tolerance (CTmax) and environmental temperature. In more disturbed, warmer habitats, genera with high CTmax had increased relative abundance and functional activity, and those with low CTmax had decreased relative abundance and functional activity. This interaction determined abundance changes between primary and logged forest that differed in daily maximum temperature by a modest 1.1°C, and strengthened as the change in microclimate increased with disturbance. Between habitats that differed by 5.6°C (primary forest to oil palm) and 4.5°C (logged forest to oil palm), a 1°C difference in CTmax among genera led to a 23% and 16% change in relative abundance, and a 22% and 17% difference in functional activity. CTmax was negatively correlated with body size and trophic position, with ants becoming significantly smaller and less predatory as microclimate temperatures increased. Our results provide evidence to support the widely held, but never directly tested, assumption that physiological tolerances underpin the influence of disturbance‐induced microclimate change on the abundance and function of invertebrates in tropical landscapes. A free Plain Language Summary can be found within the Supporting Information of this article.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/2263/84398Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/86645Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticle . 2020License: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/272710Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryUniversiti Malaysia Sabah: UMS Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 United Kingdom, United Kingdom, United Kingdom, Germany, Switzerland, France, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: I..., EC | GREENCYCLESII, EC | GEOCARBON +3 projectsNSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| GREENCYCLESII ,EC| GEOCARBON ,EC| CARBOCHANGE ,EC| EMBRACE ,EC| LUC4CAuthors: Peter Levy;Steve D Jones;
Richard J. Ellis;Steve D Jones
Steve D Jones in OpenAIREAnders Ahlström;
+28 AuthorsAnders Ahlström
Anders Ahlström in OpenAIREPeter Levy;Steve D Jones;
Richard J. Ellis;Steve D Jones
Steve D Jones in OpenAIREAnders Ahlström;
Anders Ahlström
Anders Ahlström in OpenAIREC. Le Quéré;
C. Le Quéré
C. Le Quéré in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRENicolas Gruber;
Nicolas Gruber
Nicolas Gruber in OpenAIREPierre Friedlingstein;
Pierre Friedlingstein
Pierre Friedlingstein in OpenAIRELaurent Bopp;
Laurent Bopp
Laurent Bopp in OpenAIREHeather Graven;
Gordon B. Bonan;Heather Graven
Heather Graven in OpenAIREStephen Sitch;
Mark R. Lomas;Stephen Sitch
Stephen Sitch in OpenAIREJosep G. Canadell;
Josep G. Canadell
Josep G. Canadell in OpenAIREChris Huntingford;
Chris Huntingford
Chris Huntingford in OpenAIREChristoph Heinze;
Christoph Heinze;Christoph Heinze
Christoph Heinze in OpenAIREBenjamin Smith;
Benjamin Smith
Benjamin Smith in OpenAIRERanga B. Myneni;
Ning Zeng; S. L. Piao;Ranga B. Myneni
Ranga B. Myneni in OpenAIRESönke Zaehle;
Sönke Zaehle
Sönke Zaehle in OpenAIREScott C. Doney;
Scott C. Doney
Scott C. Doney in OpenAIREAlmut Arneth;
Almut Arneth
Almut Arneth in OpenAIRESamuel Levis;
Samuel Levis
Samuel Levis in OpenAIRENicolas Viovy;
Manuel Gloor;Nicolas Viovy
Nicolas Viovy in OpenAIREZaichun Zhu;
Zaichun Zhu
Zaichun Zhu in OpenAIREPhilippe Peylin;
Philippe Peylin
Philippe Peylin in OpenAIREGuillermo N. Murray-Tortarolo;
Guillermo N. Murray-Tortarolo
Guillermo N. Murray-Tortarolo in OpenAIREBenjamin Poulter;
Benjamin Poulter
Benjamin Poulter in OpenAIREFrédéric Chevallier;
Frédéric Chevallier
Frédéric Chevallier in OpenAIREAbstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 United Kingdom, United Kingdom, United Kingdom, Germany, Switzerland, France, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: I..., EC | GREENCYCLESII, EC | GEOCARBON +3 projectsNSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| GREENCYCLESII ,EC| GEOCARBON ,EC| CARBOCHANGE ,EC| EMBRACE ,EC| LUC4CAuthors: Peter Levy;Steve D Jones;
Richard J. Ellis;Steve D Jones
Steve D Jones in OpenAIREAnders Ahlström;
+28 AuthorsAnders Ahlström
Anders Ahlström in OpenAIREPeter Levy;Steve D Jones;
Richard J. Ellis;Steve D Jones
Steve D Jones in OpenAIREAnders Ahlström;
Anders Ahlström
Anders Ahlström in OpenAIREC. Le Quéré;
C. Le Quéré
C. Le Quéré in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRENicolas Gruber;
Nicolas Gruber
Nicolas Gruber in OpenAIREPierre Friedlingstein;
Pierre Friedlingstein
Pierre Friedlingstein in OpenAIRELaurent Bopp;
Laurent Bopp
Laurent Bopp in OpenAIREHeather Graven;
Gordon B. Bonan;Heather Graven
Heather Graven in OpenAIREStephen Sitch;
Mark R. Lomas;Stephen Sitch
Stephen Sitch in OpenAIREJosep G. Canadell;
Josep G. Canadell
Josep G. Canadell in OpenAIREChris Huntingford;
Chris Huntingford
Chris Huntingford in OpenAIREChristoph Heinze;
Christoph Heinze;Christoph Heinze
Christoph Heinze in OpenAIREBenjamin Smith;
Benjamin Smith
Benjamin Smith in OpenAIRERanga B. Myneni;
Ning Zeng; S. L. Piao;Ranga B. Myneni
Ranga B. Myneni in OpenAIRESönke Zaehle;
Sönke Zaehle
Sönke Zaehle in OpenAIREScott C. Doney;
Scott C. Doney
Scott C. Doney in OpenAIREAlmut Arneth;
Almut Arneth
Almut Arneth in OpenAIRESamuel Levis;
Samuel Levis
Samuel Levis in OpenAIRENicolas Viovy;
Manuel Gloor;Nicolas Viovy
Nicolas Viovy in OpenAIREZaichun Zhu;
Zaichun Zhu
Zaichun Zhu in OpenAIREPhilippe Peylin;
Philippe Peylin
Philippe Peylin in OpenAIREGuillermo N. Murray-Tortarolo;
Guillermo N. Murray-Tortarolo
Guillermo N. Murray-Tortarolo in OpenAIREBenjamin Poulter;
Benjamin Poulter
Benjamin Poulter in OpenAIREFrédéric Chevallier;
Frédéric Chevallier
Frédéric Chevallier in OpenAIREAbstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Authors:Meng, Bo;
Xue, Jinjun;Meng, Bo
Meng, Bo in OpenAIREFeng, Kuishuang;
Feng, Kuishuang
Feng, Kuishuang in OpenAIREGuan, Dabo;
+1 AuthorsGuan, Dabo
Guan, Dabo in OpenAIREMeng, Bo;
Xue, Jinjun;Meng, Bo
Meng, Bo in OpenAIREFeng, Kuishuang;
Feng, Kuishuang
Feng, Kuishuang in OpenAIREGuan, Dabo;
Fu, Xue;Guan, Dabo
Guan, Dabo in OpenAIREIn this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO2 emissions, CO2 emissions in trade and the regional trade balances of CO2 emissions. Our results do not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO2 emissions are created and distributed across regions via domestic and global production networks. Results show that a region’ sC O2 emissions depend on its intra-regional production technology, energy use efficiency, as well as its position and participation degree in domestic and global supply chains. & 2013 Elsevier Ltd. All rights reserved.
Energy Policy arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Policy arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Authors:Meng, Bo;
Xue, Jinjun;Meng, Bo
Meng, Bo in OpenAIREFeng, Kuishuang;
Feng, Kuishuang
Feng, Kuishuang in OpenAIREGuan, Dabo;
+1 AuthorsGuan, Dabo
Guan, Dabo in OpenAIREMeng, Bo;
Xue, Jinjun;Meng, Bo
Meng, Bo in OpenAIREFeng, Kuishuang;
Feng, Kuishuang
Feng, Kuishuang in OpenAIREGuan, Dabo;
Fu, Xue;Guan, Dabo
Guan, Dabo in OpenAIREIn this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO2 emissions, CO2 emissions in trade and the regional trade balances of CO2 emissions. Our results do not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO2 emissions are created and distributed across regions via domestic and global production networks. Results show that a region’ sC O2 emissions depend on its intra-regional production technology, energy use efficiency, as well as its position and participation degree in domestic and global supply chains. & 2013 Elsevier Ltd. All rights reserved.
Energy Policy arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 158 citations 158 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Policy arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu