- home
- Advanced Search
- Energy Research
- 2016-2025
- US
- CN
- CH
- UA
- Aurora Universities Network
- Energy Research
- 2016-2025
- US
- CN
- CH
- UA
- Aurora Universities Network
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 13 Jul 2020Publisher:Dryad Funded by:SNSF | Host-parasite interaction..., FCT | SFRH/BPD/91527/2012SNSF| Host-parasite interactions on the move - mechanisms and cascading consequences of malaria infections in migratory birds ,FCT| SFRH/BPD/91527/2012Briedis, Martins; Bauer, Silke; Adamík, Peter; Alves, José; Costa, Joana; Emmenegger, Tamara; Gustafsson, Lars; Koleček, Jaroslav; Krist, Miloš; Liechti, Felix; Lisovski, Simeon; Meier, Christoph; Procházka, Petr; Hahn, Steffen;Aim: Animal migration strategies balance trade-offs between mortality and reproduction in seasonal environments. Knowledge of broad-scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here we present a flyway-scale assessment of the spatial structure and seasonal dynamics of the Afro-Palearctic bird migration system and explore how phenology of the environment guides long-distance migration. Location: Europe and Africa. Time period: 2009–2017. Major taxa studied: Birds. Methods: We compiled an individual-based dataset comprising 23 passerine and near-passerine species of 55 European breeding populations where a total of 564 individuals were tracked migrating between Europe and sub-Saharan Africa. In addition, we used remote sensed observations on primary productivity (NDVI) to estimate the timing of vegetation green-up in spring and senescence in autumn across Europe. First, we described how individual breeding and non-breeding sites and the migratory flyways link geographically. Second, we examined how migration timing along the two major Afro-Palearctic flyways is tuned with vegetation phenology en route and at the breeding sites. Results: While we found the longitudes of individual breeding and non-breeding sites to be strongly positively related, the latitudes of breeding and non-breeding sites were negatively related. In autumn, timing of migration was similar along the Western and the Eastern flyways and happened ahead of the autumnal senescence of vegetation. In spring, migration timing was approximately two weeks later along the Eastern flyway than on the Western flyway which coincided with the later spring green-up in Eastern Europe. Main Conclusions: Migration of the Afro-Palearctic landbirds follows a longitudinally parallel leap-frog migration pattern where migrants track vegetation green-up in spring and depart before vegetation senescence in autumn. However, the ongoing global change have the potential to disrupt this spatiotemporal synchronization between migration timing and spring green-up with variable effects on different migrant populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hdr7sqvdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hdr7sqvdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Kaag, A.M.; Schulte, M.H.J.; Jansen, J.M; van Wingen, G.; Homberg, J.R.; van den Brink, W.; Wiers, R.W.; Schmaal, L.; Goudriaan, A.E.; Goudriaan, A.E.; Reneman, L.;Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use.In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine.Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively.These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders.
Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Madalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; +196 AuthorsMadalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; Michael M. Berkebile-Weinberg; Samantha J. Grayson; Yash Patel; Danielle Goldwert; Yifei Pei; Alek Chakroff; Ekaterina Pronizius; Karlijn L. van den Broek; Denisa Vlasceanu; Sara Constantino; Michael J. Morais; Philipp Schumann; Steve Rathje; Ke Fang; Salvatore Maria Aglioti; Mark Alfano; Andy J. Alvarado-Yepez; Angélica Andersen; Frederik Anseel; Matthew A. J. Apps; Chillar Asadli; Fonda Jane Awuor; Flavio Azevedo; Piero Basaglia; Jocelyn J. Bélanger; Sebastian Berger; Paul Bertin; Michał Białek; Olga Bialobrzeska; Michelle Blaya-Burgo; Daniëlle N. M. Bleize; Simen Bø; Lea Boecker; Paulo S. Boggio; Sylvie Borau; Björn Bos; Ayoub Bouguettaya; Markus Brauer; Cameron Brick; Tymofii Brik; Roman Briker; Tobias Brosch; Ondrej Buchel; Daniel Buonauro; Radhika Butalia; Héctor Carvacho; Sarah A. E. Chamberlain; Hang-Yee Chan; Dawn Chow; Dongil Chung; Luca Cian; Noa Cohen-Eick; Luis Sebastian Contreras-Huerta; Davide Contu; Vladimir Cristea; Jo Cutler; Silvana D'Ottone; Jonas De Keersmaecker; Sarah Delcourt; Sylvain Delouvée; Kathi Diel; Benjamin D. Douglas; Moritz A. Drupp; Shreya Dubey; Jānis Ekmanis; Christian T. Elbaek; Mahmoud Elsherif; Iris M. Engelhard; Yannik A. Escher; Tom W. Etienne; Laura Farage; Ana Rita Farias; Stefan Feuerriegel; Andrej Findor; Lucia Freira; Malte Friese; Neil Philip Gains; Albina Gallyamova; Sandra J. Geiger; Oliver Genschow; Biljana Gjoneska; Theofilos Gkinopoulos; Beth Goldberg; Amit Goldenberg; Sarah Gradidge; Simone Grassini; Kurt Gray; Sonja Grelle; Siobhán M. Griffin; Lusine Grigoryan; Ani Grigoryan; Dmitry Grigoryev; June Gruber; Johnrev Guilaran; Britt Hadar; Ulf J.J. Hahnel; Eran Halperin; Annelie J. Harvey; Christian A. P. Haugestad; Aleksandra M. Herman; Hal E. Hershfield; Toshiyuki Himichi; Donald W. Hine; Wilhelm Hofmann; Lauren Howe; Enma T. Huaman-Chulluncuy; Guanxiong Huang; Tatsunori Ishii; Ayahito Ito; Fanli Jia; John T. Jost; Veljko Jovanović; Dominika Jurgiel; Ondřej Kácha; Reeta Kankaanpää; Jaroslaw Kantorowicz; Elena Kantorowicz-Reznichenko; Keren Kaplan Mintz; Ilker Kaya; Ozgur Kaya; Narine Khachatryan; Anna Klas; Colin Klein; Christian A. Klöckner; Lina Koppel; Alexandra I. Kosachenko; Emily J. Kothe; Ruth Krebs; Amy R. Krosch; Andre P.M. Krouwel; Yara Kyrychenko; Maria Lagomarsino; Claus Lamm; Florian Lange; Julia Lee Cunningham; Jeffrey Lees; Tak Yan Leung; Neil Levy; Patricia L. Lockwood; Chiara Longoni; Alberto López Ortega; David D. Loschelder; Jackson G. Lu; Yu Luo; Joseph Luomba; Annika E. Lutz; Johann M. Majer; Ezra Markowitz; Abigail A. Marsh; Karen Louise Mascarenhas; Bwambale Mbilingi; Winfred Mbungu; Cillian McHugh; Marijn H.C. Meijers; Hugo Mercier; Fenant Laurent Mhagama; Katerina Michalakis; Nace Mikus; Sarah Milliron; Panagiotis Mitkidis; Fredy S. Monge-Rodríguez; Youri L. Mora; David Moreau; Kosuke Motoki; Manuel Moyano; Mathilde Mus; Joaquin Navajas; Tam Luong Nguyen; Dung Minh Nguyen; Trieu Nguyen; Laura Niemi; Sari R. R. Nijssen; Gustav Nilsonne; Jonas P. Nitschke; Laila Nockur; Ritah Okura; Sezin Öner; Asil Ali Özdoğru; Helena Palumbo; Costas Panagopoulos; Maria Serena Panasiti; Philip Pärnamets; Mariola Paruzel-Czachura; Yuri G. Pavlov; César Payán-Gómez; Adam R. Pearson; Leonor Pereira da Costa; Hannes M. Petrowsky; Stefan Pfattheicher; Nhat Tan Pham; Vladimir Ponizovskiy; Clara Pretus; Gabriel G. Rêgo; Ritsaart Reimann; Shawn A. Rhoads; Julian Riano-Moreno;doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Yue Dou; Cecilia Zagaria; Louise O'Connor; Wilfried Thuiller; Peter H. Verburg;Ambitious international targets are being developed to protect and restore biodiversity under the Convention on Biological Diversity's post-2020 Global Biodiversity Framework and the European Union's Green Deal. Yet, the land system consequences of meeting such targets are unclear, as multiple pathways may be able to deliver on the set targets. This paper introduces a novel scenario approach assessing the plural implementations of these targets. The Nature Futures Framework (NFF) developed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to illustrate the different, positive ways in which society can value nature. It therefore offers a lens through which the spatial implementation of sustainability targets may be envisioned. We used CLUMondo, a spatially explicit model, to simulate plural land system scenarios for Europe for 2050. The model builds on current land system representations of Europe and explores how and where sustainability targets can be implemented under projected population trends and commodity demands. We created three different scenarios in which the sustainability targets are met, each representing an alternative, normative view on nature as represented by the NFF, favoring land systems providing strong climate regulation (Nature for Society), species conservation (Nature for Nature), or agricultural heritage features (Nature as Culture). Our results show that, irrespective of the NFF view, meeting sustainability targets will require European land systems to drastically change, as natural grasslands and forests are forecast to expand while productive areas are projected to undergo a dual intensification and diversification trajectory. Despite each NFF perspective showcasing a similar direction of change, 20% of Europe's land area will differ based on the adopted NFF perspective, with hotspots of disagreement identified in eastern and western Europe. These simulations go beyond existing scenario approaches by not only depicting broad societal developments for Europe, but also by quantifying the land system synergies and trade-offs associated with alternative, archetypal, interpretations and values of how nature may be managed for sustainability. This quantification exemplifies a means towards constructive dialogue, on the one hand by acknowledging areas of contention, and bringing such issues to the fore, and on the other by highlighting points of convergence in a vision for a sustainable Europe.
IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmhcme1hi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 13 Jul 2020Publisher:Dryad Funded by:SNSF | Host-parasite interaction..., FCT | SFRH/BPD/91527/2012SNSF| Host-parasite interactions on the move - mechanisms and cascading consequences of malaria infections in migratory birds ,FCT| SFRH/BPD/91527/2012Briedis, Martins; Bauer, Silke; Adamík, Peter; Alves, José; Costa, Joana; Emmenegger, Tamara; Gustafsson, Lars; Koleček, Jaroslav; Krist, Miloš; Liechti, Felix; Lisovski, Simeon; Meier, Christoph; Procházka, Petr; Hahn, Steffen;Aim: Animal migration strategies balance trade-offs between mortality and reproduction in seasonal environments. Knowledge of broad-scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here we present a flyway-scale assessment of the spatial structure and seasonal dynamics of the Afro-Palearctic bird migration system and explore how phenology of the environment guides long-distance migration. Location: Europe and Africa. Time period: 2009–2017. Major taxa studied: Birds. Methods: We compiled an individual-based dataset comprising 23 passerine and near-passerine species of 55 European breeding populations where a total of 564 individuals were tracked migrating between Europe and sub-Saharan Africa. In addition, we used remote sensed observations on primary productivity (NDVI) to estimate the timing of vegetation green-up in spring and senescence in autumn across Europe. First, we described how individual breeding and non-breeding sites and the migratory flyways link geographically. Second, we examined how migration timing along the two major Afro-Palearctic flyways is tuned with vegetation phenology en route and at the breeding sites. Results: While we found the longitudes of individual breeding and non-breeding sites to be strongly positively related, the latitudes of breeding and non-breeding sites were negatively related. In autumn, timing of migration was similar along the Western and the Eastern flyways and happened ahead of the autumnal senescence of vegetation. In spring, migration timing was approximately two weeks later along the Eastern flyway than on the Western flyway which coincided with the later spring green-up in Eastern Europe. Main Conclusions: Migration of the Afro-Palearctic landbirds follows a longitudinally parallel leap-frog migration pattern where migrants track vegetation green-up in spring and depart before vegetation senescence in autumn. However, the ongoing global change have the potential to disrupt this spatiotemporal synchronization between migration timing and spring green-up with variable effects on different migrant populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hdr7sqvdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.hdr7sqvdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Kaag, A.M.; Schulte, M.H.J.; Jansen, J.M; van Wingen, G.; Homberg, J.R.; van den Brink, W.; Wiers, R.W.; Schmaal, L.; Goudriaan, A.E.; Goudriaan, A.E.; Reneman, L.;Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use.In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine.Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively.These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders.
Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Madalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; +196 AuthorsMadalina Vlasceanu; Kimberly C. Doell; Joseph B. Bak-Coleman; Boryana Todorova; Michael M. Berkebile-Weinberg; Samantha J. Grayson; Yash Patel; Danielle Goldwert; Yifei Pei; Alek Chakroff; Ekaterina Pronizius; Karlijn L. van den Broek; Denisa Vlasceanu; Sara Constantino; Michael J. Morais; Philipp Schumann; Steve Rathje; Ke Fang; Salvatore Maria Aglioti; Mark Alfano; Andy J. Alvarado-Yepez; Angélica Andersen; Frederik Anseel; Matthew A. J. Apps; Chillar Asadli; Fonda Jane Awuor; Flavio Azevedo; Piero Basaglia; Jocelyn J. Bélanger; Sebastian Berger; Paul Bertin; Michał Białek; Olga Bialobrzeska; Michelle Blaya-Burgo; Daniëlle N. M. Bleize; Simen Bø; Lea Boecker; Paulo S. Boggio; Sylvie Borau; Björn Bos; Ayoub Bouguettaya; Markus Brauer; Cameron Brick; Tymofii Brik; Roman Briker; Tobias Brosch; Ondrej Buchel; Daniel Buonauro; Radhika Butalia; Héctor Carvacho; Sarah A. E. Chamberlain; Hang-Yee Chan; Dawn Chow; Dongil Chung; Luca Cian; Noa Cohen-Eick; Luis Sebastian Contreras-Huerta; Davide Contu; Vladimir Cristea; Jo Cutler; Silvana D'Ottone; Jonas De Keersmaecker; Sarah Delcourt; Sylvain Delouvée; Kathi Diel; Benjamin D. Douglas; Moritz A. Drupp; Shreya Dubey; Jānis Ekmanis; Christian T. Elbaek; Mahmoud Elsherif; Iris M. Engelhard; Yannik A. Escher; Tom W. Etienne; Laura Farage; Ana Rita Farias; Stefan Feuerriegel; Andrej Findor; Lucia Freira; Malte Friese; Neil Philip Gains; Albina Gallyamova; Sandra J. Geiger; Oliver Genschow; Biljana Gjoneska; Theofilos Gkinopoulos; Beth Goldberg; Amit Goldenberg; Sarah Gradidge; Simone Grassini; Kurt Gray; Sonja Grelle; Siobhán M. Griffin; Lusine Grigoryan; Ani Grigoryan; Dmitry Grigoryev; June Gruber; Johnrev Guilaran; Britt Hadar; Ulf J.J. Hahnel; Eran Halperin; Annelie J. Harvey; Christian A. P. Haugestad; Aleksandra M. Herman; Hal E. Hershfield; Toshiyuki Himichi; Donald W. Hine; Wilhelm Hofmann; Lauren Howe; Enma T. Huaman-Chulluncuy; Guanxiong Huang; Tatsunori Ishii; Ayahito Ito; Fanli Jia; John T. Jost; Veljko Jovanović; Dominika Jurgiel; Ondřej Kácha; Reeta Kankaanpää; Jaroslaw Kantorowicz; Elena Kantorowicz-Reznichenko; Keren Kaplan Mintz; Ilker Kaya; Ozgur Kaya; Narine Khachatryan; Anna Klas; Colin Klein; Christian A. Klöckner; Lina Koppel; Alexandra I. Kosachenko; Emily J. Kothe; Ruth Krebs; Amy R. Krosch; Andre P.M. Krouwel; Yara Kyrychenko; Maria Lagomarsino; Claus Lamm; Florian Lange; Julia Lee Cunningham; Jeffrey Lees; Tak Yan Leung; Neil Levy; Patricia L. Lockwood; Chiara Longoni; Alberto López Ortega; David D. Loschelder; Jackson G. Lu; Yu Luo; Joseph Luomba; Annika E. Lutz; Johann M. Majer; Ezra Markowitz; Abigail A. Marsh; Karen Louise Mascarenhas; Bwambale Mbilingi; Winfred Mbungu; Cillian McHugh; Marijn H.C. Meijers; Hugo Mercier; Fenant Laurent Mhagama; Katerina Michalakis; Nace Mikus; Sarah Milliron; Panagiotis Mitkidis; Fredy S. Monge-Rodríguez; Youri L. Mora; David Moreau; Kosuke Motoki; Manuel Moyano; Mathilde Mus; Joaquin Navajas; Tam Luong Nguyen; Dung Minh Nguyen; Trieu Nguyen; Laura Niemi; Sari R. R. Nijssen; Gustav Nilsonne; Jonas P. Nitschke; Laila Nockur; Ritah Okura; Sezin Öner; Asil Ali Özdoğru; Helena Palumbo; Costas Panagopoulos; Maria Serena Panasiti; Philip Pärnamets; Mariola Paruzel-Czachura; Yuri G. Pavlov; César Payán-Gómez; Adam R. Pearson; Leonor Pereira da Costa; Hannes M. Petrowsky; Stefan Pfattheicher; Nhat Tan Pham; Vladimir Ponizovskiy; Clara Pretus; Gabriel G. Rêgo; Ritsaart Reimann; Shawn A. Rhoads; Julian Riano-Moreno;doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Yue Dou; Cecilia Zagaria; Louise O'Connor; Wilfried Thuiller; Peter H. Verburg;Ambitious international targets are being developed to protect and restore biodiversity under the Convention on Biological Diversity's post-2020 Global Biodiversity Framework and the European Union's Green Deal. Yet, the land system consequences of meeting such targets are unclear, as multiple pathways may be able to deliver on the set targets. This paper introduces a novel scenario approach assessing the plural implementations of these targets. The Nature Futures Framework (NFF) developed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to illustrate the different, positive ways in which society can value nature. It therefore offers a lens through which the spatial implementation of sustainability targets may be envisioned. We used CLUMondo, a spatially explicit model, to simulate plural land system scenarios for Europe for 2050. The model builds on current land system representations of Europe and explores how and where sustainability targets can be implemented under projected population trends and commodity demands. We created three different scenarios in which the sustainability targets are met, each representing an alternative, normative view on nature as represented by the NFF, favoring land systems providing strong climate regulation (Nature for Society), species conservation (Nature for Nature), or agricultural heritage features (Nature as Culture). Our results show that, irrespective of the NFF view, meeting sustainability targets will require European land systems to drastically change, as natural grasslands and forests are forecast to expand while productive areas are projected to undergo a dual intensification and diversification trajectory. Despite each NFF perspective showcasing a similar direction of change, 20% of Europe's land area will differ based on the adopted NFF perspective, with hotspots of disagreement identified in eastern and western Europe. These simulations go beyond existing scenario approaches by not only depicting broad societal developments for Europe, but also by quantifying the land system synergies and trade-offs associated with alternative, archetypal, interpretations and values of how nature may be managed for sustainability. This quantification exemplifies a means towards constructive dialogue, on the one hand by acknowledging areas of contention, and bringing such issues to the fore, and on the other by highlighting points of convergence in a vision for a sustainable Europe.
IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu