- home
- Advanced Search
- Energy Research
- Energy
- Aurora Universities Network
- Energy Research
- Energy
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: George Cristian Lazaroiu; Mariacristina Roscia; Francesco Gagliardi;Abstract The sustainable indicators are characterized by a low degree of aggregation and a high amount of information. An indicator must show a synthetic representation of a real environmental, by using a value or a parameter, so that they can be easily used by policy makers. It is necessary to connect, therefore, the various systems in an appropriately integrated sustainable system. The indicators need to be aggregated based on the structure of the data. Each indicator must to be defined through a weight with reference to another weighted indicator. In this paper is illustrated the calculation of the assigned weights that uses a procedure based on fuzzy logic and to define a model that allows us to estimate the sustainability of a city. The final result is, therefore, a combination of values assigned by expert opinion for the various criteria, processed using fuzzy logic to obtain a weight with significant objectivity and as it is possible to estimate the sustainability of the city through the weights.
Energy arrow_drop_down Archivio Istituzionale Università di BergamoArticle . 2007Data sources: Archivio Istituzionale Università di Bergamoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2006.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Archivio Istituzionale Università di BergamoArticle . 2007Data sources: Archivio Istituzionale Università di Bergamoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2006.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Francesco Calise; Cesare Forzano; Adolfo Palombo; Annamaria Buonomano; Annamaria Buonomano; Giovanni Barone;handle: 11588/762187
Abstract This paper presents a novel dynamic simulation model for the analysis of a hybrid turboexpander system coupled with innovative high-vacuum solar thermal collectors. The model is developed in MatLab and it is able to dynamically calculate the energy, exergy, environmental, and economic performances of the investigated system, by taking into account the hourly fluctuation of thermodynamic and economic parameters (e.g. electricity cost, natural gas temperature, and flow rates, etc.). In addition, a computer-based Design of Experiment (DoE) approach was implemented for achieving the optimal design of the proposed system. A suitable case study is presented in order to show the capabilities of the developed simulation tool. Conventional and non-conventional decompression systems located in the weather zone of Messina (South-Italy) are investigated with the aim of assessing the optimal system configuration. By means of the computer-based DoE analysis, the optimal values of several design parameters (such as the number of solar thermal collectors, the volume of the hot water storage tank, and the size of the water loop pump) are calculated. Numerical results show significant primary energy savings (1.36 TWh/year) and avoided carbon dioxide emissions (348 tCO2/year). From the economic point of view, a feasible simple pay-back period of 4.51 years is achieved. The destroyed exergy of the system components are calculated, obtaining the highest value for the turbo-expander, equal to 12.0 TWh/year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.06.171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.06.171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Calise, Francesco; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura;handle: 11588/740896 , 11367/82277 , 11580/66993
Abstract In this paper a thermoeconomic analysis of a novel hybrid Renewable Polygeneration System connected to a district heating and cooling network is presented. The plant is powered simultaneously by solar and geothermal sources, producing electricity, desalinated water, heat and cooling energy. System layout includes Parabolic Through Collector (PTC) field, geothermal wells, Organic Rankine Cycle (ORC) unit and a Multi-Effect Desalination (MED) system. Cooling and thermal demands are calculated by suitable building dynamic simulation models, calibrated for Pantelleria Island. Electrical demand is obtained by measured data. A detailed control strategy has been implemented in order to prevent any heat dissipation, to match the appropriate operating temperature levels in each component, to avoid a too low temperature of geothermal fluid reinjected in the wells and to manage the priority of space heating and cooling process. A 1-year dynamic simulation has been performed and results analyzed on daily, monthly and yearly basis. The system achieved an SPB equal to 8.50 and it resulted capable to cover the energy demands of a small community. Moreover, the plant is capable to cover the fresh water demand of the Pantelleria Island.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Weber, Christoph; Gebhardt, B.; Fahl, U.;Abstract Aspects of successful market transformation are investigated both theoretically and empirically. At the theoretical level, success factors for single promotion activities are first discussed and classified, then for market transformation as a whole the emphasis is laid on the interactions between actors. Combined Action-Flow graphs are introduced as a tool for visualising the interconnections. In the empirical section, European experience with market penetration of condensing boilers is analysed. Thereby, both international comparisons and detailed customer surveys for several promotion activities in one country are used to identify the role of actors' interaction and promotion design factors in addition to usually considered technical and economic factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00086-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00086-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Carmen Branca; Antonio Galgano; Colomba Di Blasi;handle: 11588/921327 , 20.500.14243/491503
Potato, ranked third among food crops, gives rise to huge amounts of plant residues largely unutilized owing to the presence of toxic compounds. The fundamentals of the pyrolytic runaway of these residues are investigated for a packed bed heated at a temperature of 570 K. The feedstock variability (five samples of different harvest year and cultivar), corresponding to variable average plant ageing, causes remarkable differences in the char acteristic times (values between 6 and 42 s), heating rates (maxima between 5 and 155 K/s) and temperature overshoots (maxima between 220 and 410 K) of the runaway. On the other hand, the total gas and char yields are approximately the same (60–63 wt%), in consequence of the always fast and severe self-heating, also leading to evenly distributed and intense melting phenomena. The very high potassium contents (about 5–8 wt%) and a cellular structure with low porosity are the chief properties responsible for the significant exothermicity, resulting in intrinsically fast, in-situ catalyzed pyrolysis. The enhancement in the thermal severity of the pyrolytic runaway with longer plant ageing can be attributed to higher cellulose/starch contents, producing larger amounts of more reactive vapors, and thicker stem walls, confirming the key role of secondary reactions for the process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: De Bellis, Vincenzo; Bontempo, Rodolfo;handle: 11588/692848
Abstract The paper presents the validation of a 1D compressor model (1DCM) applied to the simulation of deep-surge operation. The compressor is described following an enhanced map-based approach, where proper "virtual pipes" are placed upstream and downstream the compressor to deal with the mass and energy storage and wave propagation effects. The proposed methodology, which takes into account main flow and thermal loss mechanisms, is based on the employment of "extended" compressor maps obtained through a steady version of the 1DCM. The tuning and validation of the 1DCM have been carried out comparing its results with the experimental data. Preliminarily, the steady version of the 1DCM is tuned against to the measured map for various rotational speeds. Subsequently, it is used to derive the extended map, including both direct and reverse flow branches. Finally, the unsteady version of the 1DCM is validated against experimental data denoting a satisfactory agreement, especially in terms of pulse frequency, amplitude and global shape. Summarizing, the proposed model, combining the reduced computational effort typical of 1D simulation with the adoption of advanced features such as "virtual pipe" and extended compressor map, shows the capability to capture the phenomenology of the compressor surging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Authors: P. Schmidtlein; P.-W. Phlippen; K. Kugeler; R. Swatoch;Abstract It is one of the most important requirements for reactor safety to guarantee the removal of nuclear decay heat from the core in any accident condition. Today it is well known that pebble bed fuel elements stay intact, if the accident temperature is below 1600°C. Therefore the reduction of the maximum accident temperature below 1600°C is necessary and can be done in a realistic way by passive, natural lawed heat-transfer mechanism for small and even for medium sized high temperature reactors.
Energy arrow_drop_down Nuclear Engineering and DesignArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(91)90131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Nuclear Engineering and DesignArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(91)90131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Meinel, Dominik; Wieland, Christoph; Spliethoff, Hartmut;Abstract The utilization of low temperature heat sources, e.g. waste heat, for power generation in Organic Rankine Cycles has become more and more important in recent decades. In this work, exhaust gas as the heat transfer medium is considered. Five organic working fluids in three cycle designs at three different scales are investigated in Aspen Plus V7.3. Additionally, two different constraints have been applied to the exhaust gas temperature: A minimum of 180 °C in order to avoid the acid dew point and a minimal temperature approach, where the pinch point in the exhaust gas heat exchanger is fixed at 10 K. The investigated turbine-bleeding process with regenerative pre-heating benefits higher exhaust gas outlet temperatures for further combined heat and power applications in conjunction with enhanced system performances. Also noteworthy is the lower total heat exchanger area of the process compared to the reference designs. Economic analyses are carried out in order to outline the economic merits of the turbine-bleeding cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: Calise, Francesco; Dentice d'Accadia, Massimo; Vanoli, Raffaele; Vicidomini, Maria;handle: 11588/740879
Abstract The paper presents a thermoeconomic comparison between two different solar thermal technologies, namely Linear Fresnel Reflector (LFR) and evacuated tube solar collectors (ETC), integrated into a polygeneration plant. The system produces space heating and cooling, domestic hot water and drinkable desalinated water, by means of a multi-effect distillation (MED) system. In the ETC layout, a single-effect LiBr H2O absorption chiller (ACH) is included; in the second layout, based on LFR collectors, a double-effect ACH is considered. An auxiliary biomass-fired heater is used to supply the additional heat required by the MED unit, in case of low availability of solar radiation. Both plants are simulated by means of a zero-dimensional dynamic simulation energy model, developed in TRNSYS environment. The model also includes detailed thermo-economic calculations. The results show that in some winter weeks, the solar fraction for freshwater production ranges between 15% and 20% for the ETC-based system, whereas is zero in case of LFR, when the MED unit is supplied only by the biomass auxiliary heater. Therefore, for the analysed case study, ETCs resulted more profitable than LFRs, achieving simple pay-back periods of about 4–5 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Barone G.; Buonomano A.; Forzano C.; Giuzio G. F.; Palombo A.; Russo G.;handle: 11588/869775
This paper explores the implementation of the Building To Vehicle To Building (V2B2) scheme in European Countries, by evaluating the influence of weather conditions and local energy market prices on its energy and economic performance. The use of electric vehicles as energy vectors among buildings belonging to a virtual cluster is the key aspect of the V2B2 scheme: by exploiting mobile electric storage devices, renewable electricity produced by building integrated PV panels is shared among diverse users and consumed off-site. This novel energy management scheme has a twofold aim: i) promoting energy flexibility and efficiency in multiple buildings by improving the share of self-consumed renewable electricity at a cluster level and ii) reducing the interaction with the power grid. The proposed cluster includes two buildings, a house and an office space, and an electric vehicle, and it can be considered as the basic nucleus of human linked energy users. The energy and economic performance of the proposed V2B2 scheme highly depends on weather conditions and purchasing/selling electricity price. Therefore, to assess the impact of weather and energy prices on the system energy and economic performance, a comprehensive parametric analysis is conducted by varying the main design and operating parameters of the capacity of the key components of the investigated energy cluster, such as of buildings integrating PV panels and electric storage devices. The modelled and simulated scenarios refer to two different layouts simulated in several European cities, selected to consider different weather conditions and national electricity market prices. To identify the optimal V2B2 configurations, several energy and economic indicators of each simulated scenario are compared to a conventional reference one in which the novel energy management scheme is not implemented. Through the proposed V2B2 scheme, encouraging energy savings, from a minimum of 13.6% to a maximum of 71.2%, and economic outcomes are achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: George Cristian Lazaroiu; Mariacristina Roscia; Francesco Gagliardi;Abstract The sustainable indicators are characterized by a low degree of aggregation and a high amount of information. An indicator must show a synthetic representation of a real environmental, by using a value or a parameter, so that they can be easily used by policy makers. It is necessary to connect, therefore, the various systems in an appropriately integrated sustainable system. The indicators need to be aggregated based on the structure of the data. Each indicator must to be defined through a weight with reference to another weighted indicator. In this paper is illustrated the calculation of the assigned weights that uses a procedure based on fuzzy logic and to define a model that allows us to estimate the sustainability of a city. The final result is, therefore, a combination of values assigned by expert opinion for the various criteria, processed using fuzzy logic to obtain a weight with significant objectivity and as it is possible to estimate the sustainability of the city through the weights.
Energy arrow_drop_down Archivio Istituzionale Università di BergamoArticle . 2007Data sources: Archivio Istituzionale Università di Bergamoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2006.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Archivio Istituzionale Università di BergamoArticle . 2007Data sources: Archivio Istituzionale Università di Bergamoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2006.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Francesco Calise; Cesare Forzano; Adolfo Palombo; Annamaria Buonomano; Annamaria Buonomano; Giovanni Barone;handle: 11588/762187
Abstract This paper presents a novel dynamic simulation model for the analysis of a hybrid turboexpander system coupled with innovative high-vacuum solar thermal collectors. The model is developed in MatLab and it is able to dynamically calculate the energy, exergy, environmental, and economic performances of the investigated system, by taking into account the hourly fluctuation of thermodynamic and economic parameters (e.g. electricity cost, natural gas temperature, and flow rates, etc.). In addition, a computer-based Design of Experiment (DoE) approach was implemented for achieving the optimal design of the proposed system. A suitable case study is presented in order to show the capabilities of the developed simulation tool. Conventional and non-conventional decompression systems located in the weather zone of Messina (South-Italy) are investigated with the aim of assessing the optimal system configuration. By means of the computer-based DoE analysis, the optimal values of several design parameters (such as the number of solar thermal collectors, the volume of the hot water storage tank, and the size of the water loop pump) are calculated. Numerical results show significant primary energy savings (1.36 TWh/year) and avoided carbon dioxide emissions (348 tCO2/year). From the economic point of view, a feasible simple pay-back period of 4.51 years is achieved. The destroyed exergy of the system components are calculated, obtaining the highest value for the turbo-expander, equal to 12.0 TWh/year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.06.171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.06.171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Calise, Francesco; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura;handle: 11588/740896 , 11367/82277 , 11580/66993
Abstract In this paper a thermoeconomic analysis of a novel hybrid Renewable Polygeneration System connected to a district heating and cooling network is presented. The plant is powered simultaneously by solar and geothermal sources, producing electricity, desalinated water, heat and cooling energy. System layout includes Parabolic Through Collector (PTC) field, geothermal wells, Organic Rankine Cycle (ORC) unit and a Multi-Effect Desalination (MED) system. Cooling and thermal demands are calculated by suitable building dynamic simulation models, calibrated for Pantelleria Island. Electrical demand is obtained by measured data. A detailed control strategy has been implemented in order to prevent any heat dissipation, to match the appropriate operating temperature levels in each component, to avoid a too low temperature of geothermal fluid reinjected in the wells and to manage the priority of space heating and cooling process. A 1-year dynamic simulation has been performed and results analyzed on daily, monthly and yearly basis. The system achieved an SPB equal to 8.50 and it resulted capable to cover the energy demands of a small community. Moreover, the plant is capable to cover the fresh water demand of the Pantelleria Island.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Weber, Christoph; Gebhardt, B.; Fahl, U.;Abstract Aspects of successful market transformation are investigated both theoretically and empirically. At the theoretical level, success factors for single promotion activities are first discussed and classified, then for market transformation as a whole the emphasis is laid on the interactions between actors. Combined Action-Flow graphs are introduced as a tool for visualising the interconnections. In the empirical section, European experience with market penetration of condensing boilers is analysed. Thereby, both international comparisons and detailed customer surveys for several promotion activities in one country are used to identify the role of actors' interaction and promotion design factors in addition to usually considered technical and economic factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00086-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00086-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Carmen Branca; Antonio Galgano; Colomba Di Blasi;handle: 11588/921327 , 20.500.14243/491503
Potato, ranked third among food crops, gives rise to huge amounts of plant residues largely unutilized owing to the presence of toxic compounds. The fundamentals of the pyrolytic runaway of these residues are investigated for a packed bed heated at a temperature of 570 K. The feedstock variability (five samples of different harvest year and cultivar), corresponding to variable average plant ageing, causes remarkable differences in the char acteristic times (values between 6 and 42 s), heating rates (maxima between 5 and 155 K/s) and temperature overshoots (maxima between 220 and 410 K) of the runaway. On the other hand, the total gas and char yields are approximately the same (60–63 wt%), in consequence of the always fast and severe self-heating, also leading to evenly distributed and intense melting phenomena. The very high potassium contents (about 5–8 wt%) and a cellular structure with low porosity are the chief properties responsible for the significant exothermicity, resulting in intrinsically fast, in-situ catalyzed pyrolysis. The enhancement in the thermal severity of the pyrolytic runaway with longer plant ageing can be attributed to higher cellulose/starch contents, producing larger amounts of more reactive vapors, and thicker stem walls, confirming the key role of secondary reactions for the process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.127507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: De Bellis, Vincenzo; Bontempo, Rodolfo;handle: 11588/692848
Abstract The paper presents the validation of a 1D compressor model (1DCM) applied to the simulation of deep-surge operation. The compressor is described following an enhanced map-based approach, where proper "virtual pipes" are placed upstream and downstream the compressor to deal with the mass and energy storage and wave propagation effects. The proposed methodology, which takes into account main flow and thermal loss mechanisms, is based on the employment of "extended" compressor maps obtained through a steady version of the 1DCM. The tuning and validation of the 1DCM have been carried out comparing its results with the experimental data. Preliminarily, the steady version of the 1DCM is tuned against to the measured map for various rotational speeds. Subsequently, it is used to derive the extended map, including both direct and reverse flow branches. Finally, the unsteady version of the 1DCM is validated against experimental data denoting a satisfactory agreement, especially in terms of pulse frequency, amplitude and global shape. Summarizing, the proposed model, combining the reduced computational effort typical of 1D simulation with the adoption of advanced features such as "virtual pipe" and extended compressor map, shows the capability to capture the phenomenology of the compressor surging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Authors: P. Schmidtlein; P.-W. Phlippen; K. Kugeler; R. Swatoch;Abstract It is one of the most important requirements for reactor safety to guarantee the removal of nuclear decay heat from the core in any accident condition. Today it is well known that pebble bed fuel elements stay intact, if the accident temperature is below 1600°C. Therefore the reduction of the maximum accident temperature below 1600°C is necessary and can be done in a realistic way by passive, natural lawed heat-transfer mechanism for small and even for medium sized high temperature reactors.
Energy arrow_drop_down Nuclear Engineering and DesignArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(91)90131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Nuclear Engineering and DesignArticle . 1992 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(91)90131-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Meinel, Dominik; Wieland, Christoph; Spliethoff, Hartmut;Abstract The utilization of low temperature heat sources, e.g. waste heat, for power generation in Organic Rankine Cycles has become more and more important in recent decades. In this work, exhaust gas as the heat transfer medium is considered. Five organic working fluids in three cycle designs at three different scales are investigated in Aspen Plus V7.3. Additionally, two different constraints have been applied to the exhaust gas temperature: A minimum of 180 °C in order to avoid the acid dew point and a minimal temperature approach, where the pinch point in the exhaust gas heat exchanger is fixed at 10 K. The investigated turbine-bleeding process with regenerative pre-heating benefits higher exhaust gas outlet temperatures for further combined heat and power applications in conjunction with enhanced system performances. Also noteworthy is the lower total heat exchanger area of the process compared to the reference designs. Economic analyses are carried out in order to outline the economic merits of the turbine-bleeding cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: Calise, Francesco; Dentice d'Accadia, Massimo; Vanoli, Raffaele; Vicidomini, Maria;handle: 11588/740879
Abstract The paper presents a thermoeconomic comparison between two different solar thermal technologies, namely Linear Fresnel Reflector (LFR) and evacuated tube solar collectors (ETC), integrated into a polygeneration plant. The system produces space heating and cooling, domestic hot water and drinkable desalinated water, by means of a multi-effect distillation (MED) system. In the ETC layout, a single-effect LiBr H2O absorption chiller (ACH) is included; in the second layout, based on LFR collectors, a double-effect ACH is considered. An auxiliary biomass-fired heater is used to supply the additional heat required by the MED unit, in case of low availability of solar radiation. Both plants are simulated by means of a zero-dimensional dynamic simulation energy model, developed in TRNSYS environment. The model also includes detailed thermo-economic calculations. The results show that in some winter weeks, the solar fraction for freshwater production ranges between 15% and 20% for the ETC-based system, whereas is zero in case of LFR, when the MED unit is supplied only by the biomass auxiliary heater. Therefore, for the analysed case study, ETCs resulted more profitable than LFRs, achieving simple pay-back periods of about 4–5 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Barone G.; Buonomano A.; Forzano C.; Giuzio G. F.; Palombo A.; Russo G.;handle: 11588/869775
This paper explores the implementation of the Building To Vehicle To Building (V2B2) scheme in European Countries, by evaluating the influence of weather conditions and local energy market prices on its energy and economic performance. The use of electric vehicles as energy vectors among buildings belonging to a virtual cluster is the key aspect of the V2B2 scheme: by exploiting mobile electric storage devices, renewable electricity produced by building integrated PV panels is shared among diverse users and consumed off-site. This novel energy management scheme has a twofold aim: i) promoting energy flexibility and efficiency in multiple buildings by improving the share of self-consumed renewable electricity at a cluster level and ii) reducing the interaction with the power grid. The proposed cluster includes two buildings, a house and an office space, and an electric vehicle, and it can be considered as the basic nucleus of human linked energy users. The energy and economic performance of the proposed V2B2 scheme highly depends on weather conditions and purchasing/selling electricity price. Therefore, to assess the impact of weather and energy prices on the system energy and economic performance, a comprehensive parametric analysis is conducted by varying the main design and operating parameters of the capacity of the key components of the investigated energy cluster, such as of buildings integrating PV panels and electric storage devices. The modelled and simulated scenarios refer to two different layouts simulated in several European cities, selected to consider different weather conditions and national electricity market prices. To identify the optimal V2B2 configurations, several energy and economic indicators of each simulated scenario are compared to a conventional reference one in which the novel energy management scheme is not implemented. Through the proposed V2B2 scheme, encouraging energy savings, from a minimum of 13.6% to a maximum of 71.2%, and economic outcomes are achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu