Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
667 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • 11. Sustainability
  • 9. Industry and infrastructure
  • Aurora Universities Network

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ingo Karschin; Alex G. Berg; orcid Jutta Geldermann;
    Jutta Geldermann
    ORCID
    Harvested from ORCID Public Data File

    Jutta Geldermann in OpenAIRE

    Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zeitschrift für Ener...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Zeitschrift für Energiewirtschaft
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zeitschrift für Ener...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Zeitschrift für Energiewirtschaft
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ingo Karschin; Alex G. Berg; orcid Jutta Geldermann;
    Jutta Geldermann
    ORCID
    Harvested from ORCID Public Data File

    Jutta Geldermann in OpenAIRE

    Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zeitschrift für Ener...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Zeitschrift für Energiewirtschaft
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zeitschrift für Ener...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Zeitschrift für Energiewirtschaft
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bernardo G.;
    Bernardo G.
    ORCID
    Harvested from ORCID Public Data File

    Bernardo G. in OpenAIRE
    orcid D'Alessandro S.;
    D'Alessandro S.
    ORCID
    Harvested from ORCID Public Data File

    D'Alessandro S. in OpenAIRE

    This paper analyzes different policies that may promote the transition to sustainability, with a particular focus on the energy sector. We present a dynamic simulation model where three different strategies for sustainability are identified: reduction in GHG emissions, improvements in energy efficiency and the development of the renewable energy sector. Our aim is to evaluate the dynamics that those strategies may produce in the economy, looking at different performance indicators: rate of growth, unemployment, fiscal position, GHG emission, and transition to renewable energy sources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2014 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bernardo G.;
    Bernardo G.
    ORCID
    Harvested from ORCID Public Data File

    Bernardo G. in OpenAIRE
    orcid D'Alessandro S.;
    D'Alessandro S.
    ORCID
    Harvested from ORCID Public Data File

    D'Alessandro S. in OpenAIRE

    This paper analyzes different policies that may promote the transition to sustainability, with a particular focus on the energy sector. We present a dynamic simulation model where three different strategies for sustainability are identified: reduction in GHG emissions, improvements in energy efficiency and the development of the renewable energy sector. Our aim is to evaluate the dynamics that those strategies may produce in the economy, looking at different performance indicators: rate of growth, unemployment, fiscal position, GHG emission, and transition to renewable energy sources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2014 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Cartenì A.;
    Cartenì A.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cartenì A. in OpenAIRE
    De Guglielmo M. L.; Pascale N.; orcid Calabrese M.;
    Calabrese M.
    ORCID
    Harvested from ORCID Public Data File

    Calabrese M. in OpenAIRE

    A Sustainable Urban Mobility Plan (SUMP) is a strategic (long period) transportation plan aimed to improve welfare of both people and workers living in the city as well as in its surrounding area. Compared to “traditional” urban transportation plans, SUMP moves the focus from traffic (vehicles) to people with significant advancements in the direction of a sustainable mobility jointly with the quality of life. According to the recent European Guidelines, this type of strategic plan has to be built on existing planning practices and take due consideration: the integration, the participation, and evaluation. Starting from these considerations, in absence of a detailed national guideline implementing SUMP, the aim of this paper was to apply an innovative theoretical decision-making approachfor the development of the Naples (Italy) SUMP. This case study appears to be interesting because of the specificity of Naples, that is the third largest Italian city and metropolitan area with the highest population density. In 2016, the city of Naples has efficiently concluded and ratified a first formalization of acts: 'The analysis of mobility system' and ‘The statement of strategic objectives

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1201/978135...
    Part of book or chapter of book . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Cartenì A.;
    Cartenì A.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cartenì A. in OpenAIRE
    De Guglielmo M. L.; Pascale N.; orcid Calabrese M.;
    Calabrese M.
    ORCID
    Harvested from ORCID Public Data File

    Calabrese M. in OpenAIRE

    A Sustainable Urban Mobility Plan (SUMP) is a strategic (long period) transportation plan aimed to improve welfare of both people and workers living in the city as well as in its surrounding area. Compared to “traditional” urban transportation plans, SUMP moves the focus from traffic (vehicles) to people with significant advancements in the direction of a sustainable mobility jointly with the quality of life. According to the recent European Guidelines, this type of strategic plan has to be built on existing planning practices and take due consideration: the integration, the participation, and evaluation. Starting from these considerations, in absence of a detailed national guideline implementing SUMP, the aim of this paper was to apply an innovative theoretical decision-making approachfor the development of the Naples (Italy) SUMP. This case study appears to be interesting because of the specificity of Naples, that is the third largest Italian city and metropolitan area with the highest population density. In 2016, the city of Naples has efficiently concluded and ratified a first formalization of acts: 'The analysis of mobility system' and ‘The statement of strategic objectives

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1201/978135...
    Part of book or chapter of book . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid IODICE, Paolo;
    IODICE, Paolo
    ORCID
    Harvested from ORCID Public Data File

    IODICE, Paolo in OpenAIRE
    orcid bw LANGELLA, GIUSEPPE;
    LANGELLA, GIUSEPPE
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    LANGELLA, GIUSEPPE in OpenAIRE
    orcid bw AMORESANO, AMEDEO;
    AMORESANO, AMEDEO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    AMORESANO, AMEDEO in OpenAIRE
    orcid bw SENATORE, ADOLFO;
    SENATORE, ADOLFO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    SENATORE, ADOLFO in OpenAIRE

    AbstractNowadays, many health, environmental, and economic concerns are associated with fossil fuel use, and therefore the improvement of new and advanced technologies and the use of renewable fuel...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Engineering
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid IODICE, Paolo;
    IODICE, Paolo
    ORCID
    Harvested from ORCID Public Data File

    IODICE, Paolo in OpenAIRE
    orcid bw LANGELLA, GIUSEPPE;
    LANGELLA, GIUSEPPE
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    LANGELLA, GIUSEPPE in OpenAIRE
    orcid bw AMORESANO, AMEDEO;
    AMORESANO, AMEDEO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    AMORESANO, AMEDEO in OpenAIRE
    orcid bw SENATORE, ADOLFO;
    SENATORE, ADOLFO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    SENATORE, ADOLFO in OpenAIRE

    AbstractNowadays, many health, environmental, and economic concerns are associated with fossil fuel use, and therefore the improvement of new and advanced technologies and the use of renewable fuel...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Engineering
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Adolfo Palombo;
    Adolfo Palombo
    ORCID
    Harvested from ORCID Public Data File

    Adolfo Palombo in OpenAIRE
    orcid bw Annamaria Buonomano;
    Annamaria Buonomano
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Annamaria Buonomano in OpenAIRE
    Andreas K. Athienitis;

    Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Adolfo Palombo;
    Adolfo Palombo
    ORCID
    Harvested from ORCID Public Data File

    Adolfo Palombo in OpenAIRE
    orcid bw Annamaria Buonomano;
    Annamaria Buonomano
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Annamaria Buonomano in OpenAIRE
    Andreas K. Athienitis;

    Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Keying Wang;
    Keying Wang
    ORCID
    Harvested from ORCID Public Data File

    Keying Wang in OpenAIRE
    Yongyan Cui; Hongwu Zhang; orcid Xunpeng Shi;
    Xunpeng Shi
    ORCID
    Harvested from ORCID Public Data File

    Xunpeng Shi in OpenAIRE
    +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Keying Wang;
    Keying Wang
    ORCID
    Harvested from ORCID Public Data File

    Keying Wang in OpenAIRE
    Yongyan Cui; Hongwu Zhang; orcid Xunpeng Shi;
    Xunpeng Shi
    ORCID
    Harvested from ORCID Public Data File

    Xunpeng Shi in OpenAIRE
    +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Radu Brănisteanu; orcid Harry Aiking;
    Harry Aiking
    ORCID
    Harvested from ORCID Public Data File

    Harry Aiking in OpenAIRE

    To evaluate the balance between occupational and environmental exposure to suspended particulate matter (SPM) and polycyclic aromatic hydrocarbons (PAHs), comparison measurements were performed in a coal-fired power plant and the urban atmosphere from the town nearby.The analysis of SPM for PAH content was done according to a high-performance liquid chromatography (HPLC)-based method. The microscopic assessment was performed using scanning electron microscopy (SEM) by silver coverage of the samples derived by air filter.Contrary to expectations, the results showed low levels of particle-bound PAHs in the occupational environment (< 1 ng benzo(a)pyrene/m3 air) and high levels in urban air (range 80-1250 ng benzo(a)pyrene/m3). The SPM collected from the power plant exhibited non-respirable characteristics (particles larger than 10 microm), whereas urban SPM almost exclusively contained respirable airborne particles (<3 microm).The PAH burden, combined with the enhanced probability of respiratory absorption, confers a much greater hazard potential to the urban SPM. Under these conditions, in areas or countries in which old technologies remain in use, occupational exposure to SPM containing PAHs might represent a severe underestimation of the total risk as it does not take into account the background air pollution.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Archives of Occupational and Environmental Health
    Article . 1998 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Archives of Occupational and Environmental Health
      Article . 1998 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Radu Brănisteanu; orcid Harry Aiking;
    Harry Aiking
    ORCID
    Harvested from ORCID Public Data File

    Harry Aiking in OpenAIRE

    To evaluate the balance between occupational and environmental exposure to suspended particulate matter (SPM) and polycyclic aromatic hydrocarbons (PAHs), comparison measurements were performed in a coal-fired power plant and the urban atmosphere from the town nearby.The analysis of SPM for PAH content was done according to a high-performance liquid chromatography (HPLC)-based method. The microscopic assessment was performed using scanning electron microscopy (SEM) by silver coverage of the samples derived by air filter.Contrary to expectations, the results showed low levels of particle-bound PAHs in the occupational environment (< 1 ng benzo(a)pyrene/m3 air) and high levels in urban air (range 80-1250 ng benzo(a)pyrene/m3). The SPM collected from the power plant exhibited non-respirable characteristics (particles larger than 10 microm), whereas urban SPM almost exclusively contained respirable airborne particles (<3 microm).The PAH burden, combined with the enhanced probability of respiratory absorption, confers a much greater hazard potential to the urban SPM. Under these conditions, in areas or countries in which old technologies remain in use, occupational exposure to SPM containing PAHs might represent a severe underestimation of the total risk as it does not take into account the background air pollution.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Archives of Occupational and Environmental Health
    Article . 1998 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Archives of Occupational and Environmental Health
      Article . 1998 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peter Nijkamp;
    Peter Nijkamp
    ORCID
    Harvested from ORCID Public Data File

    Peter Nijkamp in OpenAIRE
    orcid Kostas Bithas;
    Kostas Bithas
    ORCID
    Harvested from ORCID Public Data File

    Kostas Bithas in OpenAIRE
    Kostas Bithas; Clive Richardson; +1 Authors

    Taking GDP as the standard economic indicator for economic welfare, recent Resources-Economy studies indicate the “dematerialization” of the economy, the so-called decoupling effect. This conclusion seems to alleviate concerns over resource scarcity and limits to growth, and feeds optimism for green growth and sustainability prospects. However, the validity of GDP as the sole and unambiguous measure of the ultimate outcome of the economy has been severely disputed. There is nowadays increasing interest in broader welfare measurements that capture more aspects of economic output and hence constitute better approximations of well-being. The present paper provides an overview of the above discussion and sets out to explore the relevance of three alternative welfare indicators – the Human Development Index (HDI), the Index of Sustainable Economic Welfare (ISEW) and the Genuine Progress Indicator (GPI) – as a basis for evaluating the dependency of welfare and its major engine, the economy, on natural resources. Increasing welfare appears to require a disproportionate use of resources. Strong and increasing dependency on resources at the global level and in giant countries such as China and India may have serious implications for current sustainability policies and the United Nations Sustainable Development Goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    56
    citations56
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peter Nijkamp;
    Peter Nijkamp
    ORCID
    Harvested from ORCID Public Data File

    Peter Nijkamp in OpenAIRE
    orcid Kostas Bithas;
    Kostas Bithas
    ORCID
    Harvested from ORCID Public Data File

    Kostas Bithas in OpenAIRE
    Kostas Bithas; Clive Richardson; +1 Authors

    Taking GDP as the standard economic indicator for economic welfare, recent Resources-Economy studies indicate the “dematerialization” of the economy, the so-called decoupling effect. This conclusion seems to alleviate concerns over resource scarcity and limits to growth, and feeds optimism for green growth and sustainability prospects. However, the validity of GDP as the sole and unambiguous measure of the ultimate outcome of the economy has been severely disputed. There is nowadays increasing interest in broader welfare measurements that capture more aspects of economic output and hence constitute better approximations of well-being. The present paper provides an overview of the above discussion and sets out to explore the relevance of three alternative welfare indicators – the Human Development Index (HDI), the Index of Sustainable Economic Welfare (ISEW) and the Genuine Progress Indicator (GPI) – as a basis for evaluating the dependency of welfare and its major engine, the economy, on natural resources. Increasing welfare appears to require a disproportionate use of resources. Strong and increasing dependency on resources at the global level and in giant countries such as China and India may have serious implications for current sustainability policies and the United Nations Sustainable Development Goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    56
    citations56
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barker, Terry; Pan, Haoran; Köhler, Jonathan; Warren, Rachel; +1 Authors

    This paper reports how endogenous economic growth and technological change have been introduced into a global econometric model. It explains how further technological change might be induced by mitigation policies so as to reduce greenhouse gas emissions and stabilize atmospheric concentrations. These are the first results of a structural econometric approach to modeling the global economy using the model E3MG (energy-environment-economy model of the globe), which in turn constitutes one component in the Community Integrated Assessment System (CIAS) of the UK Tyndall Centre. The model is simplified to provide a post-Keynesian view of the long-run, with an indicator of technological progress affecting each region’s exports and energy use. When technological progress is endogenous in this way, long-run growth in global GDP is partly explained by the model. Average permit prices and tax rates about $430/tC (1995) prices after 2050 are sufficient to stabilize atmospheric concentrations at 450ppm CO2 after 2100. They also lead to higher economic growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Energy Journalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    64
    citations64
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Energy Journalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barker, Terry; Pan, Haoran; Köhler, Jonathan; Warren, Rachel; +1 Authors

    This paper reports how endogenous economic growth and technological change have been introduced into a global econometric model. It explains how further technological change might be induced by mitigation policies so as to reduce greenhouse gas emissions and stabilize atmospheric concentrations. These are the first results of a structural econometric approach to modeling the global economy using the model E3MG (energy-environment-economy model of the globe), which in turn constitutes one component in the Community Integrated Assessment System (CIAS) of the UK Tyndall Centre. The model is simplified to provide a post-Keynesian view of the long-run, with an indicator of technological progress affecting each region’s exports and energy use. When technological progress is endogenous in this way, long-run growth in global GDP is partly explained by the model. Average permit prices and tax rates about $430/tC (1995) prices after 2050 are sufficient to stabilize atmospheric concentrations at 450ppm CO2 after 2100. They also lead to higher economic growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Energy Journalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    64
    citations64
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Energy Journalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Richard S.J. Tol;
    Richard S.J. Tol
    ORCID
    Harvested from ORCID Public Data File

    Richard S.J. Tol in OpenAIRE
    Samuel Frankhauser;

    Climate change is unique among the consequences of fossil fuel burning in its far reaching impact, both spatially and temporally. Earlier studies estimate the aggregated monetized damage due to climate change at 1.5 to 2.0% of world GDP (for 2 × CO2); the OECD would lose 1.0 to 1.5% of GDP; the developing countries 2.0 to 9.0%, according to these estimates. These figures are not comprehensive and highly uncertain. Newer studies increasingly emphasize adaptation, variability, extreme events, other (non-climate change) stress factors and the need for integrated assessment of damages. As a result, differences in impacts between regions and sectors have increased, the market impacts in developed countries tended to fall, and non-market impacts have become increasingly important. Marginal damages are more interesting from a policy point of view. Earlier estimates range from about US$5 to US$125 per tonne of carbon, with most estimates at the lower end of this range. These figures are based on polynomial functions in the level of climate change, but the rate of change may be equally important, as are the speed of adaptation, restoration and value adjustment. Furthermore, future vulnerability to climate change will be different from current vulnerability. On the whole, the market impacts fall (relatively) with economic growth while the non-market impacts rise (relatively) with growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Richard S.J. Tol;
    Richard S.J. Tol
    ORCID
    Harvested from ORCID Public Data File

    Richard S.J. Tol in OpenAIRE
    Samuel Frankhauser;

    Climate change is unique among the consequences of fossil fuel burning in its far reaching impact, both spatially and temporally. Earlier studies estimate the aggregated monetized damage due to climate change at 1.5 to 2.0% of world GDP (for 2 × CO2); the OECD would lose 1.0 to 1.5% of GDP; the developing countries 2.0 to 9.0%, according to these estimates. These figures are not comprehensive and highly uncertain. Newer studies increasingly emphasize adaptation, variability, extreme events, other (non-climate change) stress factors and the need for integrated assessment of damages. As a result, differences in impacts between regions and sectors have increased, the market impacts in developed countries tended to fall, and non-market impacts have become increasingly important. Marginal damages are more interesting from a policy point of view. Earlier estimates range from about US$5 to US$125 per tonne of carbon, with most estimates at the lower end of this range. These figures are based on polynomial functions in the level of climate change, but the rate of change may be equally important, as are the speed of adaptation, restoration and value adjustment. Furthermore, future vulnerability to climate change will be different from current vulnerability. On the whole, the market impacts fall (relatively) with economic growth while the non-market impacts rise (relatively) with growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph