- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- US
- Transport Research
- European Marine Science
- Energy Research
- 12. Responsible consumption
- US
- Transport Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Nyawira A. Muthiga; Alessandro Lovatelli; Chantal Conand; Hampus Eriksson; Hampus Eriksson; Steven W Purcell;Good governance is paramount to the sustainability of fisheries, and inclusiveness of stakeholder groups has become the centerpiece in the ethos of managing small-scale fisheries. Understanding the effect of governance network structures on fishery sustainability can help guide governance to achieve desired outcomes. Data on resource users, fishing methods, governance networks and classifications of stock health were compiled for 17 sea cucumber fisheries in the Indian Ocean. The subjective influence of the actors and the complexity of governance networks on the health of wild stocks were analyzed. The fisheries differed widely in their resource users, fishing methods and governance networks. Little correspondence was found between the number of nodes in the governance networks and the health (exploitation status) of wild stocks. Government entities dominated the networks but neither their relative influence in the networks nor their proportionate contribution to the number of entities in the networks greatly affected stock health. These findings do not refute the benefits of inclusive governance, but rather suggest that multiple other factors (e.g. inadequate regulations, weak enforcement, high number of fishers) are also likely to play a role in influencing sea cucumber fishery sustainability. These factors must be tackled in tandem with good governance.
Hyper Article en Lig... arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2015.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2015.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, FrancePublisher:Elsevier BV Victor Brun; Salvatore Arico; Françoise Gaill; Valérie Masson-Delmotte; Norma Patricia Muñoz; Laurent Bopp; Julian Barbière; Silva Osvaldina; Nele Matz-Lück; William W. L. Cheung; Hans-Otto Pörtner; Frédéric Ménard; Jacqueline Uku; Marie-Alexandrine Sicre; Chris Bowler; Ricardo S. Santos; Johanna J. Heymans; Amadou Thierno Gaye; Stéphanie Thiébault; Agathe Euzen; Nathalie Hilmi; M. Araujo; Denis Bailly; Robert T. Watson; Cyrille Barnerias; Cameron Diver; Anna Zivian; Joachim Claudet; Alexander Turra; Romain Troublé; Torsten Thiele; Rodolphe Devillers; Rodolphe Devillers; Remi Parmentier; Patricia Ricard; Antoine Pebayle; Martin Visbeck; Peter M. Haugan; Isabelle Ansorge; Elva Escobar-Briones; Lauren S. Mullineaux; Anny Cazenave; Cyril Moulin; Patricia Miloslavich;The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Germany, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | AtlantOS, UKRI | Marine LTSS: Climate Link...EC| AtlantOS ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceAnne-Cathrin Wölfl; Gordon Johnston; Geoffroy Lamarche; Geoffroy Lamarche; Larry Mayer; David Millar; Terje Haga Pedersen; Kim Picard; Anja Reitz; Thierry Schmitt; Martin Visbeck; Helen Snaith; Pauline Weatherall; Rochelle Wigley; Sam Amirebrahimi; Colin W. Devey; Boris Dorschel; Vicki Ferrini; Veerle A. I. Huvenne; Martin Jakobsson; Jennifer Jencks;Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Ireland, Italy, Slovenia, PortugalPublisher:Frontiers Media SA Publicly fundedFunded by:RCN | Downsizing light harvesti..., RCN | PROMAC: Energy efficient ..., EC | MARINA +4 projectsRCN| Downsizing light harvesting antennae to scale up production potential and valorization from cultivation of marine microalgae. ,RCN| PROMAC: Energy efficient PROcessing of MACroalgae in blue-green value chains ,EC| MARINA ,EC| GoJelly ,FCT| Applied Molecular Biosciences Unit ,RCN| The Norwegian Seaweed Biorefinery Platform (SBP-N) ,GSRIAna Rotter; Ariola Bacu; Michèle Barbier; Francesco Bertoni; Atle M. Bones; M. Leonor Cancela; Jens Carlsson; Maria F. Carvalho; Marta Cegłowska; Meltem Conk Dalay; Thanos Dailianis; Irem Deniz; Dragana Drakulovic; Arita Dubnika; Hjörleifur Einarsson; Ayşegül Erdoğan; Orhan Tufan Eroldoğan; David Ezra; Stefano Fazi; Richard J. FitzGerald; Laura M. Gargan; Susana P. Gaudêncio; Nadica Ivošević DeNardis; Danijela Joksimovic; Marija Kataržytė; Jonne Kotta; Manolis Mandalakis; Inga Matijošytė; Hanna Mazur-Marzec; Alexia Massa-Gallucci; Mohamed Mehiri; Søren Laurentius Nielsen; Lucie Novoveská; Donata Overlingė; Michelle E. Portman; Krzysztof Pyrc; Céline Rebours; Thorsten Reinsch; Fernando Reyes; Baruch Rinkevich; Johan Robbens; Vita Rudovica; Jerica Sabotič; Ivo Safarik; Ivo Safarik; Siret Talve; Deniz Tasdemir; Deniz Tasdemir; Xenia Theodotou Schneider; Olivier P. Thomas; Anna Toruńska-Sitarz; Giovanna Cristina Varese; Marlen I. Vasquez;Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.
OceanRep arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaDigital repository of Slovenian research organizationsArticle . 2020License: CC BYData sources: Digital repository of Slovenian research organizationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 320visibility views 320 download downloads 349 Powered bymore_vert OceanRep arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaDigital repository of Slovenian research organizationsArticle . 2020License: CC BYData sources: Digital repository of Slovenian research organizationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Embargo end date: 11 Dec 2020 United Kingdom, Germany, Germany, Switzerland, Australia, France, Norway, United Kingdom, Australia, Norway, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:UKRI | Ocean Regulation of Clima..., RCN | Integrated Carbon Observa..., UKRI | Southern OceaN optimal Ap... +6 projectsUKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) ,UKRI| NCEO LTS-S ,RCN| Infrastructure for Norwegian Earth System modelling ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| CRESCENDO ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP)P. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; W. Peters; J. Pongratz; J. Pongratz; S. Sitch; C. Le Quéré; J. G. Canadell; P. Ciais; R. B. Jackson; S. Alin; L. E. O. C. Aragão; L. E. O. C. Aragão; A. Arneth; V. Arora; N. R. Bates; N. R. Bates; M. Becker; M. Becker; A. Benoit-Cattin; H. C. Bittig; L. Bopp; S. Bultan; N. Chandra; N. Chandra; F. Chevallier; L. P. Chini; W. Evans; L. Florentie; P. M. Forster; T. Gasser; M. Gehlen; D. Gilfillan; T. Gkritzalis; L. Gregor; N. Gruber; I. Harris; K. Hartung; K. Hartung; V. Haverd; R. A. Houghton; T. Ilyina; A. K. Jain; E. Joetzjer; K. Kadono; E. Kato; V. Kitidis; J. I. Korsbakken; P. Landschützer; N. Lefèvre; A. Lenton; S. Lienert; Z. Liu; D. Lombardozzi; G. Marland; G. Marland; N. Metzl; D. R. Munro; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; Y. Niwa; Y. Niwa; K. O'Brien; K. O'Brien; T. Ono; P. I. Palmer; P. I. Palmer; D. Pierrot; B. Poulter; L. Resplandy; E. Robertson; C. Rödenbeck; J. Schwinger; J. Schwinger; R. Séférian; I. Skjelvan; I. Skjelvan; A. J. P. Smith; A. J. Sutton; T. Tanhua; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; G. van der Werf; N. Vuichard; A. P. Walker; R. Wanninkhof; A. J. Watson; D. Willis; A. J. Wiltshire; W. Yuan; X. Yue; S. Zaehle;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
CORE arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2K citations 1,618 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Dirk Koopmans; Volker Meyer; Allison Schaap; Marius Dewar; Paul Färber; Matthew Long; Jonas Gros; Douglas Connelly; Moritz Holtappels;handle: 1912/27958
Abstract We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1016/j.ijggc.2021.103476Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 7 Powered bymore_vert OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1016/j.ijggc.2021.103476Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Research , Report 2010 United StatesPublisher:World Bank Authors: Hamilton, Kirk; Akbar, Sameer;doi: 10.1596/27605
handle: 10986/27605
This internal background paper has been prepared to help inform the 2010 environment strategy with respect to a proposed way forward on use of country systems. The World Bank Group environment strategy is built on three pillars: leveraging natural resources for growth and poverty reduction; managing the environmental risks to growth and development; and transforming growth paths. As part of its exploration of these three pillars, the strategy considers the question of environmental co-benefits of climate change actions. In particular, it poses the question of potential trade-offs between actions to address climate change and other local and regional environmental priorities, and considers how to maximize co-benefits arising from climate action. The primary objective of this background paper is to assess the potential for climate change mitigation and adaptation actions to provide environmental co-benefits, particularly in the quality of environmental media, flow of ecosystem services, and maintenance of biodiversity. To accomplish this, the paper is organized in five sections: section one gives provision of an organizing framework to identify and classify potential co-benefits; section two gives summary of the external literature on co-benefits; section three gives review of examples from the World Bank portfolio; section four presents initial thoughts on creation of enabling conditions for co-benefit provision; and section five gives review of implications for the environment strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Nyawira A. Muthiga; Alessandro Lovatelli; Chantal Conand; Hampus Eriksson; Hampus Eriksson; Steven W Purcell;Good governance is paramount to the sustainability of fisheries, and inclusiveness of stakeholder groups has become the centerpiece in the ethos of managing small-scale fisheries. Understanding the effect of governance network structures on fishery sustainability can help guide governance to achieve desired outcomes. Data on resource users, fishing methods, governance networks and classifications of stock health were compiled for 17 sea cucumber fisheries in the Indian Ocean. The subjective influence of the actors and the complexity of governance networks on the health of wild stocks were analyzed. The fisheries differed widely in their resource users, fishing methods and governance networks. Little correspondence was found between the number of nodes in the governance networks and the health (exploitation status) of wild stocks. Government entities dominated the networks but neither their relative influence in the networks nor their proportionate contribution to the number of entities in the networks greatly affected stock health. These findings do not refute the benefits of inclusive governance, but rather suggest that multiple other factors (e.g. inadequate regulations, weak enforcement, high number of fishers) are also likely to play a role in influencing sea cucumber fishery sustainability. These factors must be tackled in tandem with good governance.
Hyper Article en Lig... arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2015.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down University of Wollongong, Australia: Research OnlineArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2015.02.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, FrancePublisher:Elsevier BV Victor Brun; Salvatore Arico; Françoise Gaill; Valérie Masson-Delmotte; Norma Patricia Muñoz; Laurent Bopp; Julian Barbière; Silva Osvaldina; Nele Matz-Lück; William W. L. Cheung; Hans-Otto Pörtner; Frédéric Ménard; Jacqueline Uku; Marie-Alexandrine Sicre; Chris Bowler; Ricardo S. Santos; Johanna J. Heymans; Amadou Thierno Gaye; Stéphanie Thiébault; Agathe Euzen; Nathalie Hilmi; M. Araujo; Denis Bailly; Robert T. Watson; Cyrille Barnerias; Cameron Diver; Anna Zivian; Joachim Claudet; Alexander Turra; Romain Troublé; Torsten Thiele; Rodolphe Devillers; Rodolphe Devillers; Remi Parmentier; Patricia Ricard; Antoine Pebayle; Martin Visbeck; Peter M. Haugan; Isabelle Ansorge; Elva Escobar-Briones; Lauren S. Mullineaux; Anny Cazenave; Cyril Moulin; Patricia Miloslavich;The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations.
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NC NDFull-Text: https://hal.science/hal-02365617Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2019.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Germany, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | AtlantOS, UKRI | Marine LTSS: Climate Link...EC| AtlantOS ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceAnne-Cathrin Wölfl; Gordon Johnston; Geoffroy Lamarche; Geoffroy Lamarche; Larry Mayer; David Millar; Terje Haga Pedersen; Kim Picard; Anja Reitz; Thierry Schmitt; Martin Visbeck; Helen Snaith; Pauline Weatherall; Rochelle Wigley; Sam Amirebrahimi; Colin W. Devey; Boris Dorschel; Vicki Ferrini; Veerle A. I. Huvenne; Martin Jakobsson; Jennifer Jencks;Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Ireland, Italy, Slovenia, PortugalPublisher:Frontiers Media SA Publicly fundedFunded by:RCN | Downsizing light harvesti..., RCN | PROMAC: Energy efficient ..., EC | MARINA +4 projectsRCN| Downsizing light harvesting antennae to scale up production potential and valorization from cultivation of marine microalgae. ,RCN| PROMAC: Energy efficient PROcessing of MACroalgae in blue-green value chains ,EC| MARINA ,EC| GoJelly ,FCT| Applied Molecular Biosciences Unit ,RCN| The Norwegian Seaweed Biorefinery Platform (SBP-N) ,GSRIAna Rotter; Ariola Bacu; Michèle Barbier; Francesco Bertoni; Atle M. Bones; M. Leonor Cancela; Jens Carlsson; Maria F. Carvalho; Marta Cegłowska; Meltem Conk Dalay; Thanos Dailianis; Irem Deniz; Dragana Drakulovic; Arita Dubnika; Hjörleifur Einarsson; Ayşegül Erdoğan; Orhan Tufan Eroldoğan; David Ezra; Stefano Fazi; Richard J. FitzGerald; Laura M. Gargan; Susana P. Gaudêncio; Nadica Ivošević DeNardis; Danijela Joksimovic; Marija Kataržytė; Jonne Kotta; Manolis Mandalakis; Inga Matijošytė; Hanna Mazur-Marzec; Alexia Massa-Gallucci; Mohamed Mehiri; Søren Laurentius Nielsen; Lucie Novoveská; Donata Overlingė; Michelle E. Portman; Krzysztof Pyrc; Céline Rebours; Thorsten Reinsch; Fernando Reyes; Baruch Rinkevich; Johan Robbens; Vita Rudovica; Jerica Sabotič; Ivo Safarik; Ivo Safarik; Siret Talve; Deniz Tasdemir; Deniz Tasdemir; Xenia Theodotou Schneider; Olivier P. Thomas; Anna Toruńska-Sitarz; Giovanna Cristina Varese; Marlen I. Vasquez;Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.
OceanRep arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaDigital repository of Slovenian research organizationsArticle . 2020License: CC BYData sources: Digital repository of Slovenian research organizationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 320visibility views 320 download downloads 349 Powered bymore_vert OceanRep arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaDigital repository of Slovenian research organizationsArticle . 2020License: CC BYData sources: Digital repository of Slovenian research organizationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Embargo end date: 11 Dec 2020 United Kingdom, Germany, Germany, Switzerland, Australia, France, Norway, United Kingdom, Australia, Norway, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:UKRI | Ocean Regulation of Clima..., RCN | Integrated Carbon Observa..., UKRI | Southern OceaN optimal Ap... +6 projectsUKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) ,UKRI| NCEO LTS-S ,RCN| Infrastructure for Norwegian Earth System modelling ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| CRESCENDO ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP)P. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; W. Peters; J. Pongratz; J. Pongratz; S. Sitch; C. Le Quéré; J. G. Canadell; P. Ciais; R. B. Jackson; S. Alin; L. E. O. C. Aragão; L. E. O. C. Aragão; A. Arneth; V. Arora; N. R. Bates; N. R. Bates; M. Becker; M. Becker; A. Benoit-Cattin; H. C. Bittig; L. Bopp; S. Bultan; N. Chandra; N. Chandra; F. Chevallier; L. P. Chini; W. Evans; L. Florentie; P. M. Forster; T. Gasser; M. Gehlen; D. Gilfillan; T. Gkritzalis; L. Gregor; N. Gruber; I. Harris; K. Hartung; K. Hartung; V. Haverd; R. A. Houghton; T. Ilyina; A. K. Jain; E. Joetzjer; K. Kadono; E. Kato; V. Kitidis; J. I. Korsbakken; P. Landschützer; N. Lefèvre; A. Lenton; S. Lienert; Z. Liu; D. Lombardozzi; G. Marland; G. Marland; N. Metzl; D. R. Munro; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; Y. Niwa; Y. Niwa; K. O'Brien; K. O'Brien; T. Ono; P. I. Palmer; P. I. Palmer; D. Pierrot; B. Poulter; L. Resplandy; E. Robertson; C. Rödenbeck; J. Schwinger; J. Schwinger; R. Séférian; I. Skjelvan; I. Skjelvan; A. J. P. Smith; A. J. Sutton; T. Tanhua; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; G. van der Werf; N. Vuichard; A. P. Walker; R. Wanninkhof; A. J. Watson; D. Willis; A. J. Wiltshire; W. Yuan; X. Yue; S. Zaehle;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
CORE arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2K citations 1,618 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Dirk Koopmans; Volker Meyer; Allison Schaap; Marius Dewar; Paul Färber; Matthew Long; Jonas Gros; Douglas Connelly; Moritz Holtappels;handle: 1912/27958
Abstract We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1016/j.ijggc.2021.103476Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 7 Powered bymore_vert OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1016/j.ijggc.2021.103476Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Research , Report 2010 United StatesPublisher:World Bank Authors: Hamilton, Kirk; Akbar, Sameer;doi: 10.1596/27605
handle: 10986/27605
This internal background paper has been prepared to help inform the 2010 environment strategy with respect to a proposed way forward on use of country systems. The World Bank Group environment strategy is built on three pillars: leveraging natural resources for growth and poverty reduction; managing the environmental risks to growth and development; and transforming growth paths. As part of its exploration of these three pillars, the strategy considers the question of environmental co-benefits of climate change actions. In particular, it poses the question of potential trade-offs between actions to address climate change and other local and regional environmental priorities, and considers how to maximize co-benefits arising from climate action. The primary objective of this background paper is to assess the potential for climate change mitigation and adaptation actions to provide environmental co-benefits, particularly in the quality of environmental media, flow of ecosystem services, and maintenance of biodiversity. To accomplish this, the paper is organized in five sections: section one gives provision of an organizing framework to identify and classify potential co-benefits; section two gives summary of the external literature on co-benefits; section three gives review of examples from the World Bank portfolio; section four presents initial thoughts on creation of enabling conditions for co-benefit provision; and section five gives review of implications for the environment strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu