- home
- Advanced Search
- Energy Research
- 14. Life underwater
- 12. Responsible consumption
- DE
- Transport Research
- Energy Research
- 14. Life underwater
- 12. Responsible consumption
- DE
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesAuthors:Harvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah; +14 AuthorsBROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREHarvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah;BROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREKUMAR, AMIT;
KUMAR, AMIT
KUMAR, AMIT in OpenAIREAranguren Gassis, Maria;
Bailey, Allison;Aranguren Gassis, Maria
Aranguren Gassis, Maria in OpenAIREGreen, Leon;
Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria;Green, Leon
Green, Leon in OpenAIREMANCUSO, FRANCESCO PAOLO;
Pereira, Camila O.; Ricevuto, Elena;MANCUSO, FRANCESCO PAOLO
MANCUSO, FRANCESCO PAOLO in OpenAIRESchram, Julie B.;
Stapp, Laura S.;Schram, Julie B.
Schram, Julie B. in OpenAIREStenberg, Simon;
Santa Rosa, Lindzai T.;Stenberg, Simon
Stenberg, Simon in OpenAIREdoi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors:P. Chan;
J. Halfar; W. Adey;S. Hetzinger;
+5 AuthorsS. Hetzinger
S. Hetzinger in OpenAIREP. Chan;
J. Halfar; W. Adey;S. Hetzinger;
S. Hetzinger
S. Hetzinger in OpenAIRET. Zack;
G.W.K. Moore;
G.W.K. Moore
G.W.K. Moore in OpenAIREU. G. Wortmann;
U. G. Wortmann
U. G. Wortmann in OpenAIREB. Williams;
B. Williams
B. Williams in OpenAIREA. Hou;
AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Frontiers Media SA Authors: Hatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
+4 AuthorsOmanović, Dario
Omanović, Dario in OpenAIREHatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
Ramachandran, Purvaja; Völker, Christoph; Barra, Ricardo O; Tagliabue, Alessandro;Omanović, Dario
Omanović, Dario in OpenAIREThe effects of climate change (CC) on contaminants and their potential consequences to marine ecosystem services and human wellbeing are of paramount importance, as they pose overlapping risks. Here, we discuss how the interaction between CC and contaminants leads to poorly constrained impacts that affects the sensitivity of organisms to contamination leading to impaired ecosystem function, services and risk assessment evaluations. Climate drivers, such as ocean warming, ocean deoxygenation, changes in circulation, ocean acidification, and extreme events interact with trace metals, organic pollutants, excess nutrients, and radionuclides in a complex manner. Overall, the holistic consideration of the pollutants-climate change nexus has significant knowledge gaps, but will be important in understanding the fate, transport, speciation, bioavailability, toxicity, and inventories of contaminants. Greater focus on these uncertainties would facilitate improved predictions of future changes in the global biogeochemical cycling of contaminants and both human health and marine ecosystems.
OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors:Rainer Froese;
Rainer Froese
Rainer Froese in OpenAIREEva Papaioannou;
Eva Papaioannou
Eva Papaioannou in OpenAIREMarco Scotti;
Marco Scotti
Marco Scotti in OpenAIREhandle: 20.500.14243/472253
AbstractClimate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:Annual Reviews Funded by:EC | MUNINEC| MUNINAuthors: Nikitas, Alexandros; Thomopoulos, Nikolas;Milakis, Dimitrios;
Milakis, Dimitrios
Milakis, Dimitrios in OpenAIREAutomation carries paradigm-shifting potential for urban transport and has critical sustainability dimensions for the future of our cities. This article examines the diverse environmental and energy-related dimensions of automated mobility at the city level by reviewing an emerging and increasingly diversified volume of literature for road, rail, water, and air passenger transport. The multimodal nature of this investigation provides the opportunity for a novel contribution that adds value to the literature in four distinctive ways. It reviews from a sustainability angle the state of the art underpinning the transition to a paradigm of automated mobility, identifies current knowledge gaps highlighting the scarcity of non-technical research outside the autonomous car's realm, articulates future directions for research and policy development, and proposes a conceptual model that contextualizes the automation-connectivity-electrification-sharing-multimodality nexus as the only way forward for vehicle automation to reach its pro-environmental and resource-saving potential.
Annual Review of Env... arrow_drop_down Annual Review of Environment and ResourcesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-012220-024657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Annual Review of Env... arrow_drop_down Annual Review of Environment and ResourcesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-environ-012220-024657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:DFGDFGAuthors:Ricardo Ewert;
Ricardo Ewert
Ricardo Ewert in OpenAIREAlexander Grahle;
Alexander Grahle
Alexander Grahle in OpenAIREKai Martins-Turner;
Kai Martins-Turner
Kai Martins-Turner in OpenAIREAnne Magdalene Syré;
+2 AuthorsAnne Magdalene Syré
Anne Magdalene Syré in OpenAIRERicardo Ewert;
Ricardo Ewert
Ricardo Ewert in OpenAIREAlexander Grahle;
Alexander Grahle
Alexander Grahle in OpenAIREKai Martins-Turner;
Kai Martins-Turner
Kai Martins-Turner in OpenAIREAnne Magdalene Syré;
Anne Magdalene Syré
Anne Magdalene Syré in OpenAIREKai Nagel;
Kai Nagel
Kai Nagel in OpenAIREDietmar Göhlich;
Dietmar Göhlich
Dietmar Göhlich in OpenAIREdoi: 10.3390/wevj12030122
Electrification is a potential solution for transport decarbonization and already widely available for individual and public transport. However, the availability of electrified commercial vehicles like waste collection vehicles is still limited, despite their significant contribution to urban emissions. Moreover, there is a lack of clarity whether electric waste collection vehicles can persist in real world conditions and which system design is required. Therefore, we introduce a multi-agent-based simulation methodology to investigate the technical feasibility and evaluate environmental and economic sustainability of an electrified urban waste collection. We present a synthetic model for waste collection demand on a per-link basis, using open available data. The tour planning is solved by an open-source algorithm as a capacitated vehicle routing problem (CVRP). This generates plausible tours which handle the demand. The generated tours are simulated with an open-source transport simulation (MATSim) for both the diesel and the electric waste collection vehicles. To compare the life cycle costs, we analyze the data using total cost of ownership (TCO). Environmental impacts are evaluated based on a Well-to-Wheel approach. We present a comparison of the two propulsion types for the exemplary use case of Berlin. And we are able to generate a suitable planning to handle Berlin’s waste collection demand using battery electric vehicles only. The TCO calculation reveals that the electrification raises the total operator cost by 16–30%, depending on the scenario and the battery size with conservative assumptions. Furthermore, the greenhouse gas emissions (GHG) can be reduced by 60–99%, depending on the carbon footprint of electric power generation.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/3/122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12030122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/3/122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12030122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Authors:Malgorzata Borchers;
Malgorzata Borchers
Malgorzata Borchers in OpenAIREDaniela Thrän;
Daniela Thrän; Yaxuan Chi; +19 AuthorsDaniela Thrän
Daniela Thrän in OpenAIREMalgorzata Borchers;
Malgorzata Borchers
Malgorzata Borchers in OpenAIREDaniela Thrän;
Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch;Daniela Thrän
Daniela Thrän in OpenAIREChristian Dold;
Christian Dold
Christian Dold in OpenAIREJohannes Förster;
Michael Herbst; Dominik Heß;Johannes Förster
Johannes Förster in OpenAIREAram Kalhori;
Aram Kalhori
Aram Kalhori in OpenAIREKetil Koop-Jakobsen;
Ketil Koop-Jakobsen
Ketil Koop-Jakobsen in OpenAIREZhan Li;
Nadine Mengis;
Thorsten B. H. Reusch;Nadine Mengis
Nadine Mengis in OpenAIREImke Rhoden;
Imke Rhoden
Imke Rhoden in OpenAIRETorsten Sachs;
Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni;Torsten Sachs
Torsten Sachs in OpenAIREJiajun Wu;
Christopher Yeates;Jiajun Wu
Jiajun Wu in OpenAIREIn its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 DenmarkPublisher:MDPI AG Authors:Malene Freudendal-Pedersen;
Malene Freudendal-Pedersen
Malene Freudendal-Pedersen in OpenAIRESven Kesselring;
Sven Kesselring
Sven Kesselring in OpenAIREEriketti Servou;
Eriketti Servou
Eriketti Servou in OpenAIREdoi: 10.3390/su11010221
Cities have changed their pulse, their pace, and reach, and the urban scale is an interconnected element of the global “network society” with new forms of social, cultural and economic life emerging. The increase in the amount and speed of mobilities has strong impacts on ecological conditions, and, so far, no comprehensive sustainable solutions are in sight. This paper focuses on the discussion around smart cities, with a specific focus on automation and sustainability. Discourses on automated mobility in urban spaces are in a process of creation and different stakeholders contribute in shaping the urban space and its infrastructures for automated driving in the near or distant future. In many ways, it seems that the current storylines, to a high degree, reinforce and (re)produce the “system of automobility”. Automobility is still treated as the iconic and taken-for-granted form of modern mobility. It seems that most actors from industry, planning, and politics consider it as being sustained through smart and green mobility innovations and modifications. The paper discusses the implication of these techno-policy discourses and storylines for urban planning. It presents preliminary results from ongoing research on policy promotion strategies of automated driving in the region of Munich, Germany.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/1/221/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/1/221/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11010221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 20 Jul 2022 Austria, United Kingdom, United Kingdom, Spain, United Kingdom, Saudi Arabia, France, Sweden, France, Sweden, Australia, France, Spain, Saudi Arabia, United Kingdom, GermanyPublisher:Cambridge University Press (CUP) Funded by:EC | COMFORT, EC | ENGAGE, EC | ERA +6 projectsEC| COMFORT ,EC| ENGAGE ,EC| ERA ,EC| CONSTRAIN ,NSERC ,EC| PROTECT ,DFG ,EC| TiPACCs ,EC| FirEUriskAuthors: Martin, Maria;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
+63 AuthorsBauer, Nico
Bauer, Nico in OpenAIREMartin, Maria;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
Bertram, Christoph;Bauer, Nico
Bauer, Nico in OpenAIREBlenckner, Thorsten;
Blenckner, Thorsten
Blenckner, Thorsten in OpenAIREBowen, Kathryn;
Bowen, Kathryn
Bowen, Kathryn in OpenAIREBrando, Paulo;
Rudolph, Tanya Brodie;Brando, Paulo
Brando, Paulo in OpenAIREBüchs, Milena;
Bustamante, Mercedes;Büchs, Milena
Büchs, Milena in OpenAIREChen, Deliang;
Chen, Deliang
Chen, Deliang in OpenAIRECleugh, Helen;
Dasgupta, Purnamita; Denton, Fatima; Donges, Jonathan;Cleugh, Helen
Cleugh, Helen in OpenAIREDonkor, Felix Kwabena;
Donkor, Felix Kwabena
Donkor, Felix Kwabena in OpenAIREDuan, Hongbo;
Duan, Hongbo
Duan, Hongbo in OpenAIREDuarte, Carlos;
Ebi, Kristie;Duarte, Carlos
Duarte, Carlos in OpenAIREEdwards, Clea;
Edwards, Clea
Edwards, Clea in OpenAIREEngel, Anja;
Engel, Anja
Engel, Anja in OpenAIREFisher, Eleanor;
Fisher, Eleanor
Fisher, Eleanor in OpenAIREFuss, Sabine;
Gaertner, Juliana; Gettelman, Andrew; Girardin, Cécile A.J.;Fuss, Sabine
Fuss, Sabine in OpenAIREGolledge, Nicholas;
Green, Jessica; Grose, Michael; Hashizume, Masahiro;Golledge, Nicholas
Golledge, Nicholas in OpenAIREHebden, Sophie;
Hepach, Helmke; Hirota, Marina; Hsu, Huang-Hsiung; Kojima, Satoshi; Lele, Sharachchandra; Lorek, Sylvia; Lotze, Heike;Hebden, Sophie
Hebden, Sophie in OpenAIREMatthews, H. Damon;
Matthews, H. Damon
Matthews, H. Damon in OpenAIREMccauley, Darren;
Mebratu, Desta;Mccauley, Darren
Mccauley, Darren in OpenAIREMengis, Nadine;
Mengis, Nadine
Mengis, Nadine in OpenAIRENolan, Rachael;
Nolan, Rachael
Nolan, Rachael in OpenAIREPihl, Erik;
Rahmstorf, Stefan;Pihl, Erik
Pihl, Erik in OpenAIRERedman, Aaron;
Redman, Aaron
Redman, Aaron in OpenAIREReid, Colleen;
Reid, Colleen
Reid, Colleen in OpenAIRERockström, Johan;
Rockström, Johan
Rockström, Johan in OpenAIRERogelj, Joeri;
Rogelj, Joeri
Rogelj, Joeri in OpenAIRESaunois, Marielle;
Sayer, Lizzie; Schlosser, Peter;Saunois, Marielle
Saunois, Marielle in OpenAIRESioen, Giles;
Sioen, Giles
Sioen, Giles in OpenAIRESpangenberg, Joachim;
Spangenberg, Joachim
Spangenberg, Joachim in OpenAIREStammer, Detlef;
Sterner, Thomas N.S.;Stammer, Detlef
Stammer, Detlef in OpenAIREStevens, Nicola;
Stevens, Nicola
Stevens, Nicola in OpenAIREThonicke, Kirsten;
Thonicke, Kirsten
Thonicke, Kirsten in OpenAIRETian, Hanqin;
Winkelmann, Ricarda; Woodcock, James;Tian, Hanqin
Tian, Hanqin in OpenAIRESendra, Olga;
Rudolph, Tanya; Donkor, Felix; Girardin, Cécile; Sterner, Thomas;Sendra, Olga
Sendra, Olga in OpenAIRENon-technical summaryWe summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summaryA synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summaryHow do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORE (RIOXX-UK Aggregator)Global SustainabilityArticleLicense: CC BYFull-Text: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2059479821000259Data sources: SygmaImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/288587Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveUPCommons. Portal del coneixement obert de la UPCArticle . 2021License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 68 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORE (RIOXX-UK Aggregator)Global SustainabilityArticleLicense: CC BYFull-Text: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2059479821000259Data sources: SygmaImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/288587Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveUPCommons. Portal del coneixement obert de la UPCArticle . 2021License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu