- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- DE
- JP
- UA
- Transport Research
- Energy Research
- Open Access
- Open Source
- DE
- JP
- UA
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesAuthors:Harvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah; +14 AuthorsBROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREHarvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah;BROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREKUMAR, AMIT;
KUMAR, AMIT
KUMAR, AMIT in OpenAIREAranguren Gassis, Maria;
Bailey, Allison;Aranguren Gassis, Maria
Aranguren Gassis, Maria in OpenAIREGreen, Leon;
Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria;Green, Leon
Green, Leon in OpenAIREMANCUSO, FRANCESCO PAOLO;
Pereira, Camila O.; Ricevuto, Elena;MANCUSO, FRANCESCO PAOLO
MANCUSO, FRANCESCO PAOLO in OpenAIRESchram, Julie B.;
Stapp, Laura S.;Schram, Julie B.
Schram, Julie B. in OpenAIREStenberg, Simon;
Santa Rosa, Lindzai T.;Stenberg, Simon
Stenberg, Simon in OpenAIREdoi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors:P. Chan;
J. Halfar; W. Adey;S. Hetzinger;
+5 AuthorsS. Hetzinger
S. Hetzinger in OpenAIREP. Chan;
J. Halfar; W. Adey;S. Hetzinger;
S. Hetzinger
S. Hetzinger in OpenAIRET. Zack;
G.W.K. Moore;
G.W.K. Moore
G.W.K. Moore in OpenAIREU. G. Wortmann;
U. G. Wortmann
U. G. Wortmann in OpenAIREB. Williams;
B. Williams
B. Williams in OpenAIREA. Hou;
AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Annual Reviews Authors:Doney, Scott C.;
Wolfe, Wiley H.; McKee, Darren C.; Fuhrman, Jay G.;Doney, Scott C.
Doney, Scott C. in OpenAIREpmid: 38955207
Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.
Annual Review of Mar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-040523-014702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Annual Review of Mar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-040523-014702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Silesian University of Technology Authors:Oleksandr Mytrofanov;
Arkadii Proskurin; Andrii Poznanskyi;Oleksandr Mytrofanov
Oleksandr Mytrofanov in OpenAIREdoi: 10.21307/tp-2021-014
A schematic diagram of a transport hybrid power plant using a new design RPE-4.4/1.75 rotary piston air engine is proposed. Its external speed characteristic is determined, according to which the maximum engine power is 8.75 kW at 850 rpm and the maximum torque is 127.54 N∙m at 400 rpm. For various gears and speeds, all the components of the power balance were determined and the dynamic characteristic of the hybrid car was obtained when operated on an air engine. According to the dependences of the power balance, the total traction force from the rotary piston air engine on the driving wheels is 5 kN. The performance of acceleration of a hybrid car while working on an air engine is estimated, namely, the dependences of acceleration, time,and acceleration path are obtained. In urban traffic, the required time to accelerate the car to a speed of 60 km/h is 15.2 s and the path is 173 m. The possible drive range of the hybrid car on compressed air without additional recharging is analyzed. On one cylinder with compressed air with a volume of 100 liters, an initial pressure of 35 MPa, and a final pressure of 2 MPa, the hybrid car can travel about 26 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21307/tp-2021-014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Authors:Hardinghaus, Michael;
Seidel, Christian;Hardinghaus, Michael
Hardinghaus, Michael in OpenAIREAnderson, John Erik;
Anderson, John Erik
Anderson, John Erik in OpenAIREdoi: 10.3390/su11215925
Electric vehicles require sufficient public charging infrastructure. This in turn necessitates detailed information on charging demand. In this paper we present a four-step approach to estimating public charging demand of electric vehicles. Previous methods are limited in their ability to provide differentiated results and adapt to future developments. Therefore, we account for user groups (private, carsharing, commercial), technical developments (vehicles, infrastructure), infrastructure availability, and carsharing development (operational area, business models, autonomous vehicles). Our approach also considers the interactions between these factors and allows for scenario analysis yielding the quantity and spatial distribution of public charging demand. We demonstrate our approach for Berlin, Germany. We find that the majority of public charging demand results from carsharing. This demand is concentrated in the city center, even when carsharing is available citywide. Public charging demand for commercial users is relatively low and located outside the city center. For private users, public charging demand shifts to the city center with an increasing market penetration of electric vehicles and technological advancements (increased range, charging speed). Public demand from private users increases dramatically when private infrastructure is absent. Finally, public charging demand shifts to the city center when private users do not have private infrastructure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/21/5925/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11215925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Yamada, Eisuke; Mashiba, Takehiko;doi: 10.3390/wevj10030048
Hydrogen fuel cell vehicles are expected to play an important role in the future and thus have improved significantly over the past years. Hydrogen fuel cell motorcycles with a small container for compressed hydrogen gas have been developed in Japan along with related regulations. As a result, national regulations have been established in Japan after discussions with Japanese motorcycle companies, stakeholders, and experts. The concept of Japanese regulations was proposed internationally, and a new international regulation on hydrogen-fueled motorcycles incorporating compressed hydrogen storage systems based on this concept are also established as United Nations Regulation No. 146. In this paper, several technical regulations on hydrogen safety specific to fuel cell motorcycles incorporating compressed hydrogen storage systems are summarized. The unique characteristics of these motorcycles, e.g., small body, light weight, and tendency to overturn easily, are considered in these regulations.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/3/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/3/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10030048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type , Conference object , Other literature type 2013 Norway, GermanyPublisher:Elsevier BV Funded by:EC | ECO2EC| ECO2Authors:Trond Mannseth;
Trond Mannseth; Hilde Kristine Hvidevold; Truls Johannessen; +1 AuthorsTrond Mannseth
Trond Mannseth in OpenAIRETrond Mannseth;
Trond Mannseth; Hilde Kristine Hvidevold; Truls Johannessen;Trond Mannseth
Trond Mannseth in OpenAIREGuttorm Alendal;
Guttorm Alendal
Guttorm Alendal in OpenAIREhandle: 1956/9745
AbstractThis paper assesses how parameter uncertainties in the model for rise velocity of CO2 droplets in the ocean cause uncertainties in their rise and dissolution in marine waters. The parameter uncertainties in the rise velocity for both hydrate coated and hydrate free droplets are estimated from experiment data. Thereafter the rise velocity is coupled with a mass transfer model to simulate the fate of dissolution of a single droplet.The assessment shows that parameter uncertainties are highest for large droplets. However, it is also shown that in some circumstances varying the temperature gives significant change in rise distance of droplets.
OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Frontiers Media SA Authors: Hatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
+4 AuthorsOmanović, Dario
Omanović, Dario in OpenAIREHatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
Ramachandran, Purvaja; Völker, Christoph; Barra, Ricardo O; Tagliabue, Alessandro;Omanović, Dario
Omanović, Dario in OpenAIREThe effects of climate change (CC) on contaminants and their potential consequences to marine ecosystem services and human wellbeing are of paramount importance, as they pose overlapping risks. Here, we discuss how the interaction between CC and contaminants leads to poorly constrained impacts that affects the sensitivity of organisms to contamination leading to impaired ecosystem function, services and risk assessment evaluations. Climate drivers, such as ocean warming, ocean deoxygenation, changes in circulation, ocean acidification, and extreme events interact with trace metals, organic pollutants, excess nutrients, and radionuclides in a complex manner. Overall, the holistic consideration of the pollutants-climate change nexus has significant knowledge gaps, but will be important in understanding the fate, transport, speciation, bioavailability, toxicity, and inventories of contaminants. Greater focus on these uncertainties would facilitate improved predictions of future changes in the global biogeochemical cycling of contaminants and both human health and marine ecosystems.
OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors:Rainer Froese;
Rainer Froese
Rainer Froese in OpenAIREEva Papaioannou;
Eva Papaioannou
Eva Papaioannou in OpenAIREMarco Scotti;
Marco Scotti
Marco Scotti in OpenAIREhandle: 20.500.14243/472253
AbstractClimate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu