- home
- Advanced Search
- Energy Research
- US
- UA
- KE
- Transport Research
- Energy Research
- US
- UA
- KE
- Transport Research
description Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Funded by:EC | 3CcarEC| 3CcarT.H. Pham; J. Jacob; S. Wilkins; C. Lauwerys; M. Dhaens;This paper presents an integrated vehicle model to simulate simultaneously the driver, powertrains, chassis, body, road condition, vehicle dynamics and the Active Suspension (AS) system with/without an energy harvesting module. The developed model is used to investigate the ride comfort and influences of energy harvesting AS system on the total energy consumption of battery Electric Vehicles (EVs) relative to EVs with a passive suspension system. Preliminary simulation results show that compared to EVs with a passive suspension system, the ones with AS system improve ride comfort, up to 31% reduction of the vehicle body acceleration RMS value, with an expense of higher energy consumption. This expense can be reduced to about 2.8% when using an energy harvesting AS system. Simulation results also demonstrate that the available energy for recuperation during the AS system operation is significant in relation to the regenerative braking energy of the propulsion system, up to approx. 70% on bumpy road surfaces.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1109/ever...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ever.2017.7935863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1109/ever...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ever.2017.7935863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Hsien-Wang Ou;doi: 10.3390/jmse11030564
It is recognized that orbital forcing of the ice sheet is through the summer air temperature, which however covaries with the sea surface temperature and both precede the ice volume signal, suggesting the ocean as an intermediary of the glacial cycles. To elucidate the ocean role, I present here a minimal box model, which entails two key physics overlooked by most climate models. First, I discern a robust ‘convective’ bound on the ocean cooling in a coupled ocean/atmosphere, and second, because of their inherent turbulence, I posit that the climate is a macroscopic manifestation of a nonequilibrium thermodynamic system. As their deductive outcome, the ocean entails bistable equilibria of maximum entropy production, which would translate to bistable ice states of polar cap and Laurentide ice sheet, enabling large ice-volume signal when subjected to modulated forcing. Since the bistable interval is lowered during Pleistocene cooling, I show that its interplay with the ice–albedo feedback may account for the mid-Pleistocene transition from 41-ky obliquity cycles to 100-ky ice-age cycles paced by eccentricity. Observational tests of the theory and its parsimony in resolving myriad glacial puzzles suggest that the theory has captured the governing physics of the Pleistocene glacial cycles.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Ukrainian State University of Science and Technologies Authors: A. F. Golovchuk;Purpose. In modern conditions of energy consumption growth and a rapid increase in energy prices the actual problem is the development and implementation of energy efficiency programs and resource-saving conversion in to a source to provide the needs of industry and municipal power. The paper aims to solve the urgent problem of energy saving and efficient use of fuel-energy ones and heat supply system optimization on the basis of Uman National University of Horticulture (UNUH). Methodology. The work investigated the process of heating and hot water supply in the course of 2007-2015 years. Implementation of current problems of energy saving is grounded on the scientific-practical and efficient assurance of fuel and energy usage. At the same time energy-saving technologies are viewed as a priority direction of the energy sector development, reduction of man-induced impact on the environment and as a way of improving the competitiveness of the national economy. Findings. Statistical data acquisition and analyzing of gas flow and outside air temperature for nine years was carried out. On the basis of this analysis, the problem was identified and specific targets for its solutions were set. Originality. Scientific novelty lies in solving the problem of energy saving and efficient use of fuel resources in Ukraine through the use of a systematic approach, the methodology development of efficient use of different fuels and optimization of local heating operation, applying contemporary automation and control systems. Firstly it was in detail analyzed and conducted the comprehensive assessment of various factors influence on energy conservation. It takes into account the human factor, professionalism and responsibility of the operators of boilers and their superiors, as well as the relevant control services. Practical value. For UNUH campus hybrid use of solid fuel and gas boilers was carried out. Decentralization of the university heating system has been conducted through the restoration of 350 individual heating systems in residential buildings, remote departments and campus dormitories. The conclusions propose the list of activities upon the real economy of fuel and energy resources, and measures to overcome the economic and political crisis in the country.
Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Poltava National Technical Yuri Kondratyuk University Authors: Muhlis Hajiyev; Yuriy Davydenko; Pavlo Mytrofanov; Oleksandr Shkurupiy;One of the most powerful modern methods of calculating complex building structures is the finite element method in theform of a displacement method for discrete systems, which involves the creation of a finite element model, that is, splittingthe structure into separate elements within each of which the functions of displacements and stresses are known. On the basisof the displacement method and the methods of iterations and half-division, an algorithm for stability calculation of the firstkind equilibrium form of compressed reinforced concrete columns with hinged fixing at the ends, considering the stiffnesschanging has been developed. The use of the above methods enables to determine the minimum critical load or stress at thefirst bifurcation and their stability loss corresponding form. The use of matrix forms contributes to simplification of high order stability loss equation. This approach enables to obtain the form of stability loss that corresponds to the critical load.
Збірник наукових пра... arrow_drop_down Збірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticleLicense: CC BY NC NDData sources: UnpayWallЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26906/znp.2019.53.1886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Збірник наукових пра... arrow_drop_down Збірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticleLicense: CC BY NC NDData sources: UnpayWallЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26906/znp.2019.53.1886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 1980 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Rutledge, G.; Lane, D.; Edblom, G.;doi: 10.2172/6739853
This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6739853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6739853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Roman Dychkovskyi; Mykola Tabachenko; Ksenia Zhadiaieva; Artur Dyczko; Edgar Cáceres Cabana;The paper represents the analysis, which has helped to establish the usage of gas hydrate technologies in the methane conversion. This gas could be obtained in different ways. Possibilities and sources for the gas obtaining have been demonstrated. Use of other environmentally friendly sources to support operation in such systems in terms of joint energy complex has been considered. The necessary kinetic connections to provide operational sustainability of all the constituents have been given. The approach helps evaluate quantitatively the priority of its physicochemical transformations to obtain gas hydrates artificially. It is possible to transport methane at considerable distances when it is solidified. Actually, in this case there is no necessity to build costly compressor stations and pipelines for its transportation to consumers. The approach is extremely important for mining regions as it helps prolong the operating period and working out of the abandoned and off-balance coal reserves. In this case, it is proposed to apply special gasification technologies tending to maximum methane recovery. The proposed solutions give the possibility to define the trends of our further research. They will be highlighted in the following authors’ studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Samantha L. Eaves; Garrett Staines; Genevra Harker-Klimeš; Margaret Pinza; Simon Geerlofs;doi: 10.3390/jmse10020177
Uncertainty surrounding the potential environmental impacts of marine energy (ME) has resulted in extensive and expensive environmental monitoring requirements for ME deployments. Recently, there have been more ME deployments and associated environmental data collection efforts, but no standardized methodologies for data collection. This hinders the use of previously collected data to inform new ME project permitting efforts. Triton Field Trials (TFiT), created at the Pacific Northwest National Laboratory by the United States (U.S.) Department of Energy, explores ways to promote more consistent environmental data collection and enable data transferability across ME device types and locations. Documents from 118 previous ME projects or ME-related research studies in the U.S. and internationally were reviewed to identify the highest priority stressor–receptor relationships to be investigated and the technologies and methodologies used to address them. Thirteen potential field sites were assessed to determine suitable locations for testing the performance of relevant monitoring technologies. This introductory paper provides an overview of how priority research areas and associated promising technologies were identified as well as how testing locations were identified for TFiT activities. Through these scoping efforts, TFiT focused on four activity areas: collision risk, underwater noise, electromagnetic fields, and changes in habitat. Technologies and methodologies were tested at field sites in Alaska, Washington, California, and New Hampshire. Detailed information on the effectiveness of the identified methodologies and specific recommendations for each of the four focus areas are included in the companion papers in this Special Issue.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Feb 2022 GermanyPublisher:Elsevier BV Authors: Schwarz, Lucas; Keler, Andreas; Krisp, Jukka M.;Introduction: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. Methods: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. Results: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. Discussion: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology.
Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Livewire Data Platform; NREL; PNNL; INL Authors: Holden, Jake; Cappellucci, Jeff;This is the API endpoint for RouteE energy prediction, which can be used to get both single vehicle link or route energy estimates and transportation network-wide energy consumption estimates for a variety of vehicles. This enables external researchers and transportation engineers to access and utilize NREL's growing library of pre-trained vehicle models for prediction of transportation energy consumption. This API provides three endpoints: - /route: Energy estimation of a vehicle over a planning link or sequence of links (route). - /network: Network-wide estimation of energy consumption for all vehicle traffic in the desired area. - /compass: Energy-optimal “eco-routing” between input origin and destination coordinates (Currently in beta for Denver metro area only).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15483/1876635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15483/1876635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Funded by:EC | 3CcarEC| 3CcarT.H. Pham; J. Jacob; S. Wilkins; C. Lauwerys; M. Dhaens;This paper presents an integrated vehicle model to simulate simultaneously the driver, powertrains, chassis, body, road condition, vehicle dynamics and the Active Suspension (AS) system with/without an energy harvesting module. The developed model is used to investigate the ride comfort and influences of energy harvesting AS system on the total energy consumption of battery Electric Vehicles (EVs) relative to EVs with a passive suspension system. Preliminary simulation results show that compared to EVs with a passive suspension system, the ones with AS system improve ride comfort, up to 31% reduction of the vehicle body acceleration RMS value, with an expense of higher energy consumption. This expense can be reduced to about 2.8% when using an energy harvesting AS system. Simulation results also demonstrate that the available energy for recuperation during the AS system operation is significant in relation to the regenerative braking energy of the propulsion system, up to approx. 70% on bumpy road surfaces.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1109/ever...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ever.2017.7935863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1109/ever...Conference object . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ever.2017.7935863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Hsien-Wang Ou;doi: 10.3390/jmse11030564
It is recognized that orbital forcing of the ice sheet is through the summer air temperature, which however covaries with the sea surface temperature and both precede the ice volume signal, suggesting the ocean as an intermediary of the glacial cycles. To elucidate the ocean role, I present here a minimal box model, which entails two key physics overlooked by most climate models. First, I discern a robust ‘convective’ bound on the ocean cooling in a coupled ocean/atmosphere, and second, because of their inherent turbulence, I posit that the climate is a macroscopic manifestation of a nonequilibrium thermodynamic system. As their deductive outcome, the ocean entails bistable equilibria of maximum entropy production, which would translate to bistable ice states of polar cap and Laurentide ice sheet, enabling large ice-volume signal when subjected to modulated forcing. Since the bistable interval is lowered during Pleistocene cooling, I show that its interplay with the ice–albedo feedback may account for the mid-Pleistocene transition from 41-ky obliquity cycles to 100-ky ice-age cycles paced by eccentricity. Observational tests of the theory and its parsimony in resolving myriad glacial puzzles suggest that the theory has captured the governing physics of the Pleistocene glacial cycles.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11030564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Ukrainian State University of Science and Technologies Authors: A. F. Golovchuk;Purpose. In modern conditions of energy consumption growth and a rapid increase in energy prices the actual problem is the development and implementation of energy efficiency programs and resource-saving conversion in to a source to provide the needs of industry and municipal power. The paper aims to solve the urgent problem of energy saving and efficient use of fuel-energy ones and heat supply system optimization on the basis of Uman National University of Horticulture (UNUH). Methodology. The work investigated the process of heating and hot water supply in the course of 2007-2015 years. Implementation of current problems of energy saving is grounded on the scientific-practical and efficient assurance of fuel and energy usage. At the same time energy-saving technologies are viewed as a priority direction of the energy sector development, reduction of man-induced impact on the environment and as a way of improving the competitiveness of the national economy. Findings. Statistical data acquisition and analyzing of gas flow and outside air temperature for nine years was carried out. On the basis of this analysis, the problem was identified and specific targets for its solutions were set. Originality. Scientific novelty lies in solving the problem of energy saving and efficient use of fuel resources in Ukraine through the use of a systematic approach, the methodology development of efficient use of different fuels and optimization of local heating operation, applying contemporary automation and control systems. Firstly it was in detail analyzed and conducted the comprehensive assessment of various factors influence on energy conservation. It takes into account the human factor, professionalism and responsibility of the operators of boilers and their superiors, as well as the relevant control services. Practical value. For UNUH campus hybrid use of solid fuel and gas boilers was carried out. Decentralization of the university heating system has been conducted through the restoration of 350 individual heating systems in residential buildings, remote departments and campus dormitories. The conclusions propose the list of activities upon the real economy of fuel and energy resources, and measures to overcome the economic and political crisis in the country.
Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Poltava National Technical Yuri Kondratyuk University Authors: Muhlis Hajiyev; Yuriy Davydenko; Pavlo Mytrofanov; Oleksandr Shkurupiy;One of the most powerful modern methods of calculating complex building structures is the finite element method in theform of a displacement method for discrete systems, which involves the creation of a finite element model, that is, splittingthe structure into separate elements within each of which the functions of displacements and stresses are known. On the basisof the displacement method and the methods of iterations and half-division, an algorithm for stability calculation of the firstkind equilibrium form of compressed reinforced concrete columns with hinged fixing at the ends, considering the stiffnesschanging has been developed. The use of the above methods enables to determine the minimum critical load or stress at thefirst bifurcation and their stability loss corresponding form. The use of matrix forms contributes to simplification of high order stability loss equation. This approach enables to obtain the form of stability loss that corresponds to the critical load.
Збірник наукових пра... arrow_drop_down Збірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticleLicense: CC BY NC NDData sources: UnpayWallЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26906/znp.2019.53.1886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Збірник наукових пра... arrow_drop_down Збірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticleLicense: CC BY NC NDData sources: UnpayWallЗбірник наукових праць: Серія: Галузеве машинобудування, будівництвоArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26906/znp.2019.53.1886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 1980 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Rutledge, G.; Lane, D.; Edblom, G.;doi: 10.2172/6739853
This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6739853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6739853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Roman Dychkovskyi; Mykola Tabachenko; Ksenia Zhadiaieva; Artur Dyczko; Edgar Cáceres Cabana;The paper represents the analysis, which has helped to establish the usage of gas hydrate technologies in the methane conversion. This gas could be obtained in different ways. Possibilities and sources for the gas obtaining have been demonstrated. Use of other environmentally friendly sources to support operation in such systems in terms of joint energy complex has been considered. The necessary kinetic connections to provide operational sustainability of all the constituents have been given. The approach helps evaluate quantitatively the priority of its physicochemical transformations to obtain gas hydrates artificially. It is possible to transport methane at considerable distances when it is solidified. Actually, in this case there is no necessity to build costly compressor stations and pipelines for its transportation to consumers. The approach is extremely important for mining regions as it helps prolong the operating period and working out of the abandoned and off-balance coal reserves. In this case, it is proposed to apply special gasification technologies tending to maximum methane recovery. The proposed solutions give the possibility to define the trends of our further research. They will be highlighted in the following authors’ studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Samantha L. Eaves; Garrett Staines; Genevra Harker-Klimeš; Margaret Pinza; Simon Geerlofs;doi: 10.3390/jmse10020177
Uncertainty surrounding the potential environmental impacts of marine energy (ME) has resulted in extensive and expensive environmental monitoring requirements for ME deployments. Recently, there have been more ME deployments and associated environmental data collection efforts, but no standardized methodologies for data collection. This hinders the use of previously collected data to inform new ME project permitting efforts. Triton Field Trials (TFiT), created at the Pacific Northwest National Laboratory by the United States (U.S.) Department of Energy, explores ways to promote more consistent environmental data collection and enable data transferability across ME device types and locations. Documents from 118 previous ME projects or ME-related research studies in the U.S. and internationally were reviewed to identify the highest priority stressor–receptor relationships to be investigated and the technologies and methodologies used to address them. Thirteen potential field sites were assessed to determine suitable locations for testing the performance of relevant monitoring technologies. This introductory paper provides an overview of how priority research areas and associated promising technologies were identified as well as how testing locations were identified for TFiT activities. Through these scoping efforts, TFiT focused on four activity areas: collision risk, underwater noise, electromagnetic fields, and changes in habitat. Technologies and methodologies were tested at field sites in Alaska, Washington, California, and New Hampshire. Detailed information on the effectiveness of the identified methodologies and specific recommendations for each of the four focus areas are included in the companion papers in this Special Issue.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Feb 2022 GermanyPublisher:Elsevier BV Authors: Schwarz, Lucas; Keler, Andreas; Krisp, Jukka M.;Introduction: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. Methods: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. Results: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. Discussion: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology.
Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Livewire Data Platform; NREL; PNNL; INL Authors: Holden, Jake; Cappellucci, Jeff;This is the API endpoint for RouteE energy prediction, which can be used to get both single vehicle link or route energy estimates and transportation network-wide energy consumption estimates for a variety of vehicles. This enables external researchers and transportation engineers to access and utilize NREL's growing library of pre-trained vehicle models for prediction of transportation energy consumption. This API provides three endpoints: - /route: Energy estimation of a vehicle over a planning link or sequence of links (route). - /network: Network-wide estimation of energy consumption for all vehicle traffic in the desired area. - /compass: Energy-optimal “eco-routing” between input origin and destination coordinates (Currently in beta for Denver metro area only).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15483/1876635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15483/1876635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Oxford University Press (OUP) Daniel Pauly; Manuel Dureuil; Maria Lourdes Deng Palomares; Giuseppe Scarcella; Donna Dimarchopoulou; Athanassios C Tsikliras; Nazli Demirel; Gianpaolo Coro; Henning Winker; Rainer Froese;AbstractThe Law of the Sea and regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method [abundance maximum sustainable yields (AMSY)] that estimates relative population size when no catch data are available using time series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty, which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert ICES Journal of Mari... arrow_drop_down ICES Journal of Marine ScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icesjms/fsz230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu