
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Triton Field Trials: Promoting Consistent Environmental Monitoring Methodologies for Marine Energy Sites

doi: 10.3390/jmse10020177
Uncertainty surrounding the potential environmental impacts of marine energy (ME) has resulted in extensive and expensive environmental monitoring requirements for ME deployments. Recently, there have been more ME deployments and associated environmental data collection efforts, but no standardized methodologies for data collection. This hinders the use of previously collected data to inform new ME project permitting efforts. Triton Field Trials (TFiT), created at the Pacific Northwest National Laboratory by the United States (U.S.) Department of Energy, explores ways to promote more consistent environmental data collection and enable data transferability across ME device types and locations. Documents from 118 previous ME projects or ME-related research studies in the U.S. and internationally were reviewed to identify the highest priority stressor–receptor relationships to be investigated and the technologies and methodologies used to address them. Thirteen potential field sites were assessed to determine suitable locations for testing the performance of relevant monitoring technologies. This introductory paper provides an overview of how priority research areas and associated promising technologies were identified as well as how testing locations were identified for TFiT activities. Through these scoping efforts, TFiT focused on four activity areas: collision risk, underwater noise, electromagnetic fields, and changes in habitat. Technologies and methodologies were tested at field sites in Alaska, Washington, California, and New Hampshire. Detailed information on the effectiveness of the identified methodologies and specific recommendations for each of the four focus areas are included in the companion papers in this Special Issue.
- Pacific Northwest National Laboratory United States
- Pacific Northwest National Laboratory United States
- Water Power Technologies Office United States
- Water Power Technologies Office United States
electromagnetic fields, data transferability, Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, collision risk, Oceanography, underwater noise, marine energy, environmental monitoring
electromagnetic fields, data transferability, Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, collision risk, Oceanography, underwater noise, marine energy, environmental monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
