- home
- Advanced Search
- Energy Research
- Restricted
- 14. Life underwater
- 12. Responsible consumption
- Transport Research
- Energy Research
- Restricted
- 14. Life underwater
- 12. Responsible consumption
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2022 Germany, United KingdomPublisher:Portland Press Ltd. Authors: Jake Bowley; Craig Baker-Austin; Steve Michell;Ceri Lewis;
Ceri Lewis
Ceri Lewis in OpenAIREMicroplastics are small (<5 mm) plastic particles of varying shapes and polymer types that are now widespread global contaminants of marine and freshwater ecosystems. Various estimates suggest that several trillions of microplastic particles are present in our global oceanic system, and that these are readily ingested by a wide range of marine and freshwater species across feeding modes and ecological niches. Here, we present some of the key and pressing issues associated with these globally important contaminants from a microbiological perspective. We discuss the potential mechanisms of pathogen attachment to plastic surfaces. We then describe the ability of pathogens (both human and animal) to form biofilms on microplastics, as well as dispersal of these bacteria, which might lead to their uptake into aquatic species ingesting microplastic particles. Finally, we discuss the role of a changing oceanic system on the potential of microplastic-associated pathogens to cause various disease outcomes using numerous case studies. We set out some key and imperative research questions regarding this globally important issue and present a methodological framework to study how and why plastic-associated pathogens should be addressed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Wiley Authors: Eggers, Sarah L.;Lewandowska, Aleksandra M.;
Lewandowska, Aleksandra M.
Lewandowska, Aleksandra M. in OpenAIREBarcelos e Ramos, Joana;
Barcelos e Ramos, Joana
Barcelos e Ramos, Joana in OpenAIREBlanco Ameijeiras, Sonia;
+2 AuthorsBlanco Ameijeiras, Sonia
Blanco Ameijeiras, Sonia in OpenAIREEggers, Sarah L.;Lewandowska, Aleksandra M.;
Lewandowska, Aleksandra M.
Lewandowska, Aleksandra M. in OpenAIREBarcelos e Ramos, Joana;
Barcelos e Ramos, Joana
Barcelos e Ramos, Joana in OpenAIREBlanco Ameijeiras, Sonia;
Gallo, Francesca;Blanco Ameijeiras, Sonia
Blanco Ameijeiras, Sonia in OpenAIREMatthiessen, Birte;
Matthiessen, Birte
Matthiessen, Birte in OpenAIREdoi: 10.1111/gcb.12421
pmid: 24115206
AbstractEcosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevatedCO2are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two differentCO2levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevatedCO2on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevatedCO2selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevatedCO2potentially has strong implications for nutrient cycling and carbon export in future oceans.
Archive ouverte UNIG... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors:Romagnoli, Francesco;
Romagnoli, Francesco
Romagnoli, Francesco in OpenAIREPastare, Laura;
Sabūnas, Audrius;Pastare, Laura
Pastare, Laura in OpenAIREBāliņa, Karīna;
+1 AuthorsBāliņa, Karīna
Bāliņa, Karīna in OpenAIRERomagnoli, Francesco;
Romagnoli, Francesco
Romagnoli, Francesco in OpenAIREPastare, Laura;
Sabūnas, Audrius;Pastare, Laura
Pastare, Laura in OpenAIREBāliņa, Karīna;
Blumberga, Dagnija;Bāliņa, Karīna
Bāliņa, Karīna in OpenAIREAbstract Seaweeds are considered a viable feedstock for producing energy through the anaerobic digestion conversion process. Its exploitation and use as an alternative renewable energy source; however, remains marginal in the EU. This study aims to evaluate BMP in batch tests of the brown algae Fucus vesiculosus from the Baltic Sea and collected from the Latvian coast. The lab scale BMP tests were oriented towards the evaluation of the effects of mechanical and microwave pre-treatment methods, as well as the impact of a different algae-to-inoculum (A/I) ratio using: i) cutting blades together with mortar and pestle (C&PM) in combination with the use of a 700 W capacity microwave, ii) 1:3 and 1:5 A/I ratios. The cumulative CH 4 yields show a value in the range of 68 ± 21 mL CH 4 /g VS – a trial with no microwave treatment and A/I of 1:3) and 144 ± 28 mL CH 4 /g VS – a trial including a microwave treatment for 3 min, and A/I ratio of 1:3. The results show effectiveness in the range of 7.8%–43.7%, when the microwave pre-treatment is applied for 1.5 min, and a range of 37.2%–45.2% when the pre-treatment is applied for 3.0 min. The results of this study suggest promising potential for F. vesiculosus for biogas production, especially in the Baltic region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Duong, Celina; Bower, Charles; Hume, Ken; Rock, Luc; Tessarolo, Stephen;Abstract Quest is a fully integrated Carbon Capture and Storage (CCS) project that started CO2 injection in August of 2015. The Quest CCS Project is located near Fort Saskatchewan, Alberta, Canada. It includes a capture facility which uses a Shell amine technology, a pipeline of about 65 km length, and three injection well pads. Each injection well pad has an injection well, a deep monitoring well, and shallow groundwater wells. The storage complex is geologically defined by the injection reservoir, a deep saline aquifer called the Basal Cambrian Sand (BCS) (about 45 m thick) and several seals, including the Middle Cambrian Shale (about 50 m thick) and Lotsberg Salts (about 120 m thick). As of August 2018, over three million tonnes of CO2 have been safely injected and permanently stored in the BCS. The Alberta Carbon Competitiveness Incentive Regulation (CCIR) requires the use of standard methods of quantification for reporting greenhouse gas (GHG) emissions for facilities with over 100,000 tonnes of carbon dioxide equivalent (CO2e) per year. An emission offset project is required to comply with CCIR, associated standards and protocols, to demonstrate a reduction in the specified gas emissions and, in the case of Quest, geological sequestration. Quest is the first CCS project to implement an offset project in the context of commercial scale on-shore CO2 geological sequestration within a saline aquifer. Quest uses the Quantification Protocol for CO2 Capture and Permanent Storage in Deep Saline Aquifers, from Alberta Environment and Parks. An offset project must develop an offset project plan (OPP) which demonstrates how the project meets the requirement of the protocol, describes how GHG emissions reductions are achieved, identifies risks associated with the quantification of emission reduction benefits, and describes methodologies used to quantify sources and sinks. Subsequent to completing the OPP, an offset project will put together offset project reports (OPR) to report on the net reductions of GHG emissions for a specific period. The intent of this paper is a) to provide an overview of the OPP and OPR for the Quest CCS project, and b) to discuss learnings from the initial compilation and submission of offset project reports. The key learning at this time is associated to the equipment improvements to the injection gas online analyzer.
OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:AIP Publishing Authors: Risén, Emma; Tatarchenko, Olena; Gröndahl, Fredrik; Malmström, Maria E.;doi: 10.1063/1.4862783
Eutrophication combined with climate change has caused ephemeral filamentous macroalgae to increase and drifts of seaweed cover large areas of some Baltic Sea sites during summer. In ongoing projects, these mass occurrences of drifting filamentous macroalgae are being harvested to mitigate eutrophication, with preliminary results indicating considerable nutrient reduction potential. In the present study, an energy assessment was made of biogas production from the retrieved biomass for a Baltic Sea pilot case. Use of different indicators revealed a positive energy balance. The energy requirements corresponded to about 30%–40% of the energy content in the end products. The net energy gain was 530–800 MJ primary energy per ton wet weight of algae for small-scale and large-scale scenarios, where 6 000 and 13 000 tonnes dwt were harvested, respectively. However, the exergy efficiency differed from the energy efficiency, emphasising the importance of taking energy quality into consideration when evaluating energy systems. An uncertainty analysis indicated parametric uncertainty of about 25%–40%, which we consider to be acceptable given the generally high sensitivity of the indicators to changes in input data, allocation method, and system design. Overall, our evaluation indicated that biogas production may be a viable handling strategy for retrieved biomass, while harvesting other types of macroalgae than red filamentous species considered here may render a better energy balance due to higher methane yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4862783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4862783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 GermanyPublisher:Elsevier BV Authors:Joselin Herbert, G.M.;
Iniyan, S.; Sreevalsan, E.; Rajapandian, S.;Joselin Herbert, G.M.
Joselin Herbert, G.M. in OpenAIREEnergy is an essential ingredient of socio-economic development and economic growth. Renewable energy sources like wind energy is indigenous and can help in reducing the dependency on fossil fuels. Wind is the indirect form of solar energy and is always being replenished by the sun. Wind is caused by differential heating of the earth's surface by the sun. It has been estimated that roughly 10 million MW of energy are continuously available in the earth's wind. Wind energy provides a variable and environmental friendly option and national energy security at a time when decreasing global reserves of fossil fuels threatens the long-term sustainability of global economy. This paper reviews the wind resources assessment models, site selection models and aerodynamic models including wake effect. The different existing performance and reliability evaluation models, various problems related to wind turbine components (blade, gearbox, generator and transformer) and grid for wind energy system have been discussed. This paper also reviews different techniques and loads for design, control systems and economics of wind energy conversion system.
OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2005.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu852 citations 852 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2005.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 GermanyPublisher:Elsevier BV Funded by:UKRI | Impacts of ocean acidific..., EC | ECO2, UKRI | Quantifying and Monitorin... +1 projectsUKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,EC| ECO2 ,UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage ,UKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cyclesAuthors:Ana M. Queirós;
Peter Taylor; Adam Cowles; Andy Reynolds; +2 AuthorsAna M. Queirós
Ana M. Queirós in OpenAIREAna M. Queirós;
Peter Taylor; Adam Cowles; Andy Reynolds; Stephen Widdicombe;Ana M. Queirós
Ana M. Queirós in OpenAIREHenrik Stahl;
Henrik Stahl
Henrik Stahl in OpenAIREAvailable methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Wiley Funded by:DFGDFGAuthors:Christian Pansch;
Christian Pansch
Christian Pansch in OpenAIREMarco Scotti;
Marco Scotti
Marco Scotti in OpenAIREFrancisco R. Barboza;
Balsam Al‐Janabi; +10 AuthorsFrancisco R. Barboza
Francisco R. Barboza in OpenAIREChristian Pansch;
Christian Pansch
Christian Pansch in OpenAIREMarco Scotti;
Marco Scotti
Marco Scotti in OpenAIREFrancisco R. Barboza;
Balsam Al‐Janabi;Francisco R. Barboza
Francisco R. Barboza in OpenAIREJanina Brakel;
Janina Brakel
Janina Brakel in OpenAIREElizabeta Briski;
Björn Bucholz; Markus Franz;Elizabeta Briski
Elizabeta Briski in OpenAIREMaysa Ito;
Maysa Ito
Maysa Ito in OpenAIREFilipa Paiva;
Mahasweta Saha; Yvonne Sawall;Filipa Paiva
Filipa Paiva in OpenAIREFlorian Weinberger;
Florian Weinberger
Florian Weinberger in OpenAIREMartin Wahl;
Martin Wahl
Martin Wahl in OpenAIREAbstractClimate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
IRIS Cnr arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Argentina, Germany, ArgentinaPublisher:Elsevier BV Funded by:EC | OCEAN-CERTAINEC| OCEAN-CERTAINAuthors:M. Celeste López Abbate;
Juan Carlos Molinero;M. Celeste López Abbate
M. Celeste López Abbate in OpenAIREValeria A. Guinder;
Valeria A. Guinder
Valeria A. Guinder in OpenAIREGerardo M.E. Perillo;
+4 AuthorsGerardo M.E. Perillo
Gerardo M.E. Perillo in OpenAIREM. Celeste López Abbate;
Juan Carlos Molinero;M. Celeste López Abbate
M. Celeste López Abbate in OpenAIREValeria A. Guinder;
Valeria A. Guinder
Valeria A. Guinder in OpenAIREGerardo M.E. Perillo;
R. Hugo Freije; Ulrich Sommer; Carla V. Spetter; Jorge E. Marcovecchio;Gerardo M.E. Perillo
Gerardo M.E. Perillo in OpenAIREEstuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/https://doi....Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.sc...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/https://doi....Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.sc...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Authors:Danielis, Romeo;
Danielis, Romeo
Danielis, Romeo in OpenAIREScorrano, Mariangela;
Scorrano, Mariangela
Scorrano, Mariangela in OpenAIREGiansoldati, Marco;
Giansoldati, Marco
Giansoldati, Marco in OpenAIREhandle: 11368/3001300
The paper has two main goals: to draw a summary picture of the progress made towards transport decarbonisation in Europe, and to identify future developments concerning the 2020–2030 decade. The analysis is based on the 4th and 5th reports prepared by the Member States under the obligation Renewable Energy Directive (2009/28/EC) and on the National Energy and Climate Plans (NECPs) for the 2020–2030 decade, paying specific attention to the use of renewables in the transport sector. We find that the Member States rely on two strategies: increasing the production and use of biofuels, especially those produced by advanced materials, and supporting the diffusion of electric vehicles. Performing a scenario analysis capturing the planned policies and goals indicated in the NECPs, we estimate that the biofuel strategy can deliver a GHG reduction of up to 19 MtCO2eq (−3.6%), while the electrification strategy can deliver a GHG reduction up to 45 MtCO2eq (−8.3%). Jointly used, the GHG reduction could reach up to 64 MtCO2eq (−11.9%).
Archivio istituziona... arrow_drop_down Research in Transportation EconomicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.retrec.2021.101068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Research in Transportation EconomicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.retrec.2021.101068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu