
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification

doi: 10.1111/gcb.12421
pmid: 24115206
AbstractEcosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevatedCO2are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two differentCO2levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevatedCO2on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevatedCO2selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevatedCO2potentially has strong implications for nutrient cycling and carbon export in future oceans.
- Helmholtz Association of German Research Centres Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- University of the Azores Portugal
- Climate Centre Netherlands
Diatoms, Climate Change, Oceans and Seas, Biodiversity, Carbon Dioxide, Hydrogen-Ion Concentration, Cyanobacteria, Phytoplankton, Dinoflagellida, Seawater, Biomass
Diatoms, Climate Change, Oceans and Seas, Biodiversity, Carbon Dioxide, Hydrogen-Ion Concentration, Cyanobacteria, Phytoplankton, Dinoflagellida, Seawater, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
