- home
- Advanced Search
- Energy Research
- Energy Research
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Germany, SwitzerlandPublisher:Springer Science and Business Media LLC Authors:Thomas Guillaume;
Thomas Guillaume; Thomas Guillaume; Dietrich Hertel; +6 AuthorsThomas Guillaume
Thomas Guillaume in OpenAIREThomas Guillaume;
Thomas Guillaume; Thomas Guillaume; Dietrich Hertel;Thomas Guillaume
Thomas Guillaume in OpenAIREValentyna Krashevska;
Valentyna Krashevska
Valentyna Krashevska in OpenAIREMartyna M. Kotowska;
Martyna M. Kotowska
Martyna M. Kotowska in OpenAIREYakov Kuzyakov;
Stefan Scheu;Yakov Kuzyakov
Yakov Kuzyakov in OpenAIREAlexander Knohl;
Kukuh Murtilaksono;Alexander Knohl
Alexander Knohl in OpenAIREAbstractLand-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha−1, 159 Mg C ha−1, and 174 Mg C ha−1, respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles.
Nature Communication... arrow_drop_down Göttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-04755-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Göttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-04755-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 01 Nov 2019 United Kingdom, SwitzerlandPublisher:American Association for the Advancement of Science (AAAS) Funded by:SNSF | Oil Palm Adaptive Landsca...SNSF| Oil Palm Adaptive LandscapesAuthors:Juan Carlos Quezada;
Juan Carlos Quezada;Juan Carlos Quezada
Juan Carlos Quezada in OpenAIREThomas Guillaume;
Thomas Guillaume; +7 AuthorsThomas Guillaume
Thomas Guillaume in OpenAIREJuan Carlos Quezada;
Juan Carlos Quezada;Juan Carlos Quezada
Juan Carlos Quezada in OpenAIREThomas Guillaume;
Thomas Guillaume;Thomas Guillaume
Thomas Guillaume in OpenAIREAndrés Etter;
Alexandre Buttler; Alexandre Buttler; Alexandre Buttler;Andrés Etter
Andrés Etter in OpenAIREJaboury Ghazoul;
Jaboury Ghazoul; Jaboury Ghazoul;Jaboury Ghazoul
Jaboury Ghazoul in OpenAIREpmid: 31799387
pmc: PMC6867872
Pasture conversion is a promising alternative to cut down the carbon footprint of deforestation for oil palm expansion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw4418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw4418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Switzerland, United Kingdom, SwitzerlandPublisher:Wiley Funded by:SNSF | Oil Palm Adaptive Landsca...SNSF| Oil Palm Adaptive LandscapesAuthors:Juan Carlos Quezada;
Juan Carlos Quezada
Juan Carlos Quezada in OpenAIREThomas Guillaume;
Thomas Guillaume
Thomas Guillaume in OpenAIREChristopher Poeplau;
Christopher Poeplau
Christopher Poeplau in OpenAIREJaboury Ghazoul;
+1 AuthorsJaboury Ghazoul
Jaboury Ghazoul in OpenAIREJuan Carlos Quezada;
Juan Carlos Quezada
Juan Carlos Quezada in OpenAIREThomas Guillaume;
Thomas Guillaume
Thomas Guillaume in OpenAIREChristopher Poeplau;
Christopher Poeplau
Christopher Poeplau in OpenAIREJaboury Ghazoul;
Jaboury Ghazoul
Jaboury Ghazoul in OpenAIREAlexandre Buttler;
Alexandre Buttler
Alexandre Buttler in OpenAIREpmid: 35060648
pmc: PMC9304317
AbstractIn recent decades, mounting evidence has indicated that the expansion of oil palm (OP) plantations at the expense of tropical forest has had a far pernicious effect on ecosystem aspects. While various deforestation‐free strategies have been proposed to enhance OP sustainability, field‐based evidence still need to be consolidated, in particular with respect to savanna regions where OP expansion has recently occurred and that present large area with potential for OP cultivation. Here we show that the common management practice creating within the plantation the so‐called management zones explained nearly five times more variability of soil biogeochemical properties than the savanna land‐use change per se. We also found that clayey‐soil savanna conversion into OP increased total ecosystem C stocks by 40 ± 13 Mg C ha−1 during a full OP cultivation cycle, which was due to the higher OP‐derived C accumulated in the biomass and in the soil as compared to the loss of savanna‐derived C. In addition, application of organic residues in specific management zones enhanced the accumulation of soil organic carbon by up to 1.9 Mg ha−1 year−1 over the full cycle. Within plantation, zones subjected to organic amendments sustained similar soil microbial activity as in neighboring savannas. Our findings represent an empirical proof‐of‐concept that the conversion of non‐forested land in parallel with organic matter‐oriented management strategies can enhance OP agroecosystems C sink capacity while promoting microbe‐mediated soil functioning. Nonetheless, savannas are unique and threatened ecosystems that support a vast biodiversity. Therefore, we suggest to give priority attention to conservation of natural savannas and direct more research toward the impacts of the conversion and subsequent management of degraded savannas.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, Switzerland, FrancePublisher:Elsevier BV Authors: Fontana, Mario;Bragazza, Luca;
Bragazza, Luca
Bragazza, Luca in OpenAIREGuillaume, Thomas;
Guillaume, Thomas
Guillaume, Thomas in OpenAIRESantonja, Mathieu;
+3 AuthorsSantonja, Mathieu
Santonja, Mathieu in OpenAIREFontana, Mario;Bragazza, Luca;
Bragazza, Luca
Bragazza, Luca in OpenAIREGuillaume, Thomas;
Guillaume, Thomas
Guillaume, Thomas in OpenAIRESantonja, Mathieu;
Buttler, Alexandre; Elfouki, Saïd;Santonja, Mathieu
Santonja, Mathieu in OpenAIRESinaj, Sokrat;
Sinaj, Sokrat
Sinaj, Sokrat in OpenAIREpmid: 33582477
The potential to use calcium phosphite (Ca-Phi) as phosphorus (P) fertilizer may represent an effective recycling of P-containing by-products. A greenhouse experiment was conducted to investigate the effect of Ca-Phi (38 kg P ha-1) on soil properties and the growth parameters of four green manure species in clay and sandy soils using Ca-Phi, TSP (triple superphosphate) and control (no fertilization) as treatments. Eight weeks after sowing, we measured aboveground biomass yield, phosphite (Phi) concentration in plant biomass, different soil P pools as well as microbial biomass nutrients. Compared to control, the addition of Ca-Phi did not negatively affect green manure yield, except for lupine (Lupinus albus L.) in clay soil. The Phi concentration in plant biomass varied across species and soil type with a maximum concentration of about 400 mg Phi kg-1 for mustard (Brassica juncea L.) in clay soil. Compared to control, TSP and Ca-Phi fertilization had a similar effect on different P pools and microbial biomass nutrients (C, N and P) although the response was soil-type dependent. In the sandy soil, after Ca-Phi addition the amount of available P (PNHCO3) increased to the same extent as in the TSP treatment (i.e. around 6 mg P kg-1) suggesting that Ca-Phi was, at least partly, oxidized. In the clay soil with high P fixing capacity, Ca-Phi promoted higher PNaHCO3 than TSP likely due to different solubility of chemical P forms. Additional studies are however required to better understand soil microbial responses and to quantify the P agronomical efficiency for the following crop under Ca-Phi fertilization.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2021Embargo end date: 12 May 2022 Austria, Austria, France, Austria, Switzerland, Sweden, SwitzerlandPublisher:eLife Sciences Publications, Ltd Funded by:EC | NICH, ANR | TransAlp, SNSF | Timescales of changing sp... +2 projectsEC| NICH ,ANR| TransAlp ,SNSF| Timescales of changing species interactions under warming climate ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,SNSF| Ecological consequences of novel plant-soil interactions under changing climateAuthors:Tom W. N. Walker;
Tom W. N. Walker
Tom W. N. Walker in OpenAIREKonstantin Gavazov;
Konstantin Gavazov
Konstantin Gavazov in OpenAIREThomas Guillaume;
Thomas Guillaume
Thomas Guillaume in OpenAIREThibault Lambert;
+10 AuthorsThibault Lambert
Thibault Lambert in OpenAIRETom W. N. Walker;
Tom W. N. Walker
Tom W. N. Walker in OpenAIREKonstantin Gavazov;
Konstantin Gavazov
Konstantin Gavazov in OpenAIREThomas Guillaume;
Thomas Guillaume
Thomas Guillaume in OpenAIREThibault Lambert;
Thibault Lambert
Thibault Lambert in OpenAIREPierre Mariotte;
Devin Routh;Pierre Mariotte
Pierre Mariotte in OpenAIREConstant Signarbieux;
Constant Signarbieux
Constant Signarbieux in OpenAIRESebastián Block;
Sebastián Block
Sebastián Block in OpenAIRETamara Münkemüller;
Tamara Münkemüller
Tamara Münkemüller in OpenAIREHanna Nomoto;
Hanna Nomoto
Hanna Nomoto in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIREAndreas Richter;
Andreas Richter
Andreas Richter in OpenAIREAlexandre Buttler;
Alexandre Buttler
Alexandre Buttler in OpenAIREJake M. Alexander;
Jake M. Alexander
Jake M. Alexander in OpenAIREClimate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here, we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% confidence intervals) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration, and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.
eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Yi Xu;
Yi Xu
Yi Xu in OpenAIREJie Zhou;
Wenhao Feng; Rong Jia; +9 AuthorsJie Zhou
Jie Zhou in OpenAIREYi Xu;
Yi Xu
Yi Xu in OpenAIREJie Zhou;
Wenhao Feng; Rong Jia; Chunyan Liu; Tongchen Fu;Jie Zhou
Jie Zhou in OpenAIREShuai Xue;
Zili Yi;Shuai Xue
Shuai Xue in OpenAIREThomas Guillaume;
Yadong Yang;Thomas Guillaume
Thomas Guillaume in OpenAIRELeanne Peixoto;
Zhaohai Zeng;Leanne Peixoto
Leanne Peixoto in OpenAIREHuadong Zang;
Huadong Zang
Huadong Zang in OpenAIREdoi: 10.1111/gcbb.12990
AbstractMarginal land conversion to perennial energy crops can provide biomass feedstocks and climate change mitigation. However, the effect of perennial energy crop cultivation on soil organic carbon (SOC) sequestration and its underlying mechanism in marginal land still remains incomplete. Here, SOC turnover, stability, and its potential sequestration were evaluated based on 10 years of land use change from C3 grass‐dominated marginal land to C4 energy crops Miscanthus and switchgrass cultivation. The naturally occurring 13C signature down to 60 cm depth was used to determine the energy crops‐derived C. Compared to reference marginal land, Miscanthus plantation increased the SOC stock at 0–60 cm depth by 17.8% and 64.3% in bulk and root zone, respectively. Similarly, the SOC stock under switchgrass was also 16.5% and 93.0% higher in bulk and root zone than in reference marginal land, respectively. The higher SOC stock in the root zone of switchgrass relative to Miscanthus was supported by the higher contribution of C4‐derived C to SOC (44.5% vs. 32.4%). The mean residence time of old C was higher under switchgrass than Miscanthus in the bulk zone across 0–60 cm (p < 0.05) but remained the same at 0–20 cm in the root zone. Specific SOC mineralization and temperature sensitivity were lower in soils under Miscanthus and switchgrass compared to reference marginal land. The partial least squares path model revealed that perennial energy crop cultivation enhances soil C stock via increased C4‐derived C input and reduced mineralization. In conclusion, marginal land conversion to perennial energy crops is a win–win strategy for C sequestration to mitigate climate change and support the growing bioenergy sector with biomass supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu