
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Valorization of calcium phosphite waste as phosphorus fertilizer: Effects on green manure productivity and soil properties


Bragazza, Luca

Guillaume, Thomas

Santonja, Mathieu

Sinaj, Sokrat
pmid: 33582477
The potential to use calcium phosphite (Ca-Phi) as phosphorus (P) fertilizer may represent an effective recycling of P-containing by-products. A greenhouse experiment was conducted to investigate the effect of Ca-Phi (38 kg P ha-1) on soil properties and the growth parameters of four green manure species in clay and sandy soils using Ca-Phi, TSP (triple superphosphate) and control (no fertilization) as treatments. Eight weeks after sowing, we measured aboveground biomass yield, phosphite (Phi) concentration in plant biomass, different soil P pools as well as microbial biomass nutrients. Compared to control, the addition of Ca-Phi did not negatively affect green manure yield, except for lupine (Lupinus albus L.) in clay soil. The Phi concentration in plant biomass varied across species and soil type with a maximum concentration of about 400 mg Phi kg-1 for mustard (Brassica juncea L.) in clay soil. Compared to control, TSP and Ca-Phi fertilization had a similar effect on different P pools and microbial biomass nutrients (C, N and P) although the response was soil-type dependent. In the sandy soil, after Ca-Phi addition the amount of available P (PNHCO3) increased to the same extent as in the TSP treatment (i.e. around 6 mg P kg-1) suggesting that Ca-Phi was, at least partly, oxidized. In the clay soil with high P fixing capacity, Ca-Phi promoted higher PNaHCO3 than TSP likely due to different solubility of chemical P forms. Additional studies are however required to better understand soil microbial responses and to quantify the P agronomical efficiency for the following crop under Ca-Phi fertilization.
microbial biomass nutrients, Phosphites, soil available phosphorus, Phosphorus, triple-superphosphate, [SDE.ES]Environmental Sciences/Environmental and Society, Manure, Soil, phosphorus recycling, [SDE.ES] Environmental Sciences/Environment and Society, Calcium, Biomass, Fertilizers, phosphite oxidation
microbial biomass nutrients, Phosphites, soil available phosphorus, Phosphorus, triple-superphosphate, [SDE.ES]Environmental Sciences/Environmental and Society, Manure, Soil, phosphorus recycling, [SDE.ES] Environmental Sciences/Environment and Society, Calcium, Biomass, Fertilizers, phosphite oxidation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
