- home
- Advanced Search
- Energy Research
- DE
- US
- FI
- European Marine Science
- Energy Research
- DE
- US
- FI
- European Marine Science
description Publicationkeyboard_double_arrow_right Article 2022 Germany, South AfricaPublisher:American Geophysical Union (AGU) Authors: Ioana Ivanciu; Thando Ndarana; Katja Matthes; Sebastian Wahl;doi: 10.1029/2022gl099607
handle: 2263/90452
AbstractRidging South Atlantic Anticyclones contribute an important amount of precipitation over South Africa. Here, we use a global coupled climate model and the ERA5 reanalysis to separate for the first time ridging highs (RHs) based on whether they occur together with Rossby wave breaking (RWB) or not. We show that the former type of RHs are associated with more precipitation than the latter type. The mean sea level pressure anomalies caused by the two types of RHs are characterized by distinct patterns, leading to differences in the flow of moisture‐laden air onto land. We additionally find that RWB mediates the effect of climate change on RHs during the twenty‐first century. Consequently, RHs occurring without RWB exhibit little change, while those occurring with RWB contribute more precipitation over the southern and less precipitation over the northeastern South Africa in the future.
OceanRep arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90452Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl099607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90452Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl099607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 PortugalPublisher:Inter-Research Science Center Funded by:NSF | NSF Postdoctoral Fellowsh...NSF| NSF Postdoctoral Fellowship in Biology FY 2019: Trophic response of marine top predators to decadal changes in food web structureAuthors: Fuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; +34 AuthorsFuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; Wallace, Bryan P.; Godley, Brendan; Brooks, Annabelle M. L; Ceriani, Simona A; Cortés-Gómez, Adriana A.; Dawson, Tiffany M.; Dodge, Kara L.; Flint, Mark; Jensen, Michael P; Komoroske, Lisa M.; Kophamel, Sara; Lettrich, Matthew; Long, Christopher A.; Nelms, Sarah E.; Patrício, Ana Rita; Robinson, Nathan J.; Seminoff, Jeffrey; Ware, Matthew; Whitman, Elizabeth R.; Chevallier, Damien; Clyde-Brockway, Chelsea E.; Korgaonkar, Sumedha A.; Mancini, Agnese; Mello-Fonseca, J; Monsinjon, Jonathan; Neves-Ferreira, Isabella; Ortega, Anna A.; Patel, Samir H.; Pfaller, Joseph B.; Ramirez, Matthew D.; Raposo, Cheila; Smith, Caitlin E.; Abreu-Grobois, F. Alberto; Hays, Graeme C.;doi: 10.3354/esr01278
Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps.
Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSERC, NSF | SGER: Development of Equi..., NSF | Intestinal Bicarbonate Se... +2 projectsNSERC ,NSF| SGER: Development of Equipement and Methodology for Simultaneous Measurements of Epithelial Transport and Oxygen Consumption ,NSF| Intestinal Bicarbonate Secretion in Marine Teleost Fish ,UKRI| Novel driving forces for water transport & osmoregulation: carbonate precipitation and osmotic coefficients ,NSF| Intestinal Bicarbonate Secretion, Osmoregulation and Acid-Base Balance in Marine FishJosi R. Taylor; Frank J. Millero; Villy Christensen; Patrick J. Walsh; Patrick J. Walsh; Simon Jennings; Martin Grosell; Rod W. Wilson;pmid: 19150840
Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.
Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Norway, Netherlands, Spain, France, Spain, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Bastien Mérigot; Romain Frelat; Iça Barri; Feriha Tserkova; Jason Conner; Daniela V. Yepsen; Richard L. O'Driscoll; Laurene Pecuchet; Margrete Emblemsvåg; Helle Siegstad; James T. Thorson; Ingrid Spies; Alexander Arkhipkin; Jorge E. Ramos; Richard J. Bell; Luis A. Cubillos; Heino O. Fock; Malin L. Pinsky; Saïkou Oumar Kidé; Menachem Goren; Laurène Mérillet; Laurène Mérillet; Manuel Hidalgo; Aurore Maureaud; Arnaud Auber; Vladimir Kulik; Jón Sólmundsson; Cecilia A. O'Leary; Matthew McLean; Ya’arit Levitt-Barmats; Dori Edelist; Jacqueline Palacios León; Félix Massiot-Granier; Kevin D. Friedland; Itai van Rijn; Kofi Amador; Hamet Diaw Diadhiou; Esther Beukhof; Petur Steingrund; Henrik Gislason; Philippe Ziegler; Wahid Refes; Martin Lindegren; Jérôme Guitton; Ignacio Sobrino; Ian Knuckey; Beyah Meissa; Billy Ernst; Evangelos Tzanatos; Vesselina Mihneva; Marcos Llope; Tarek Hattab; Elitsa Petrova; Jonathan Belmaker; Didier Gascuel; Camilo B. García; Mohamed Lamine Camara; Nir Stern; G. Tserpes; Didier Jouffre; Tracey P. Fairweather; Paraskevas Vasilakopoulos; Matt Koopman; Francis K. E. Nunoo; Fabrice Stephenson; Oren Sonin; Paul A.M. van Zwieten; Hicham Masski; Nancy L. Shackell; Esther Román-Marcote; Mariano Koen-Alonso; Junghwa Choi; Sean C. Anderson; Helle Torp Christensen; Johannes N. Kathena; Renato Guevara-Carrasco;AbstractMarine biota is redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. We further found that single surveys do not cover the full range of the main commercial demersal fish species and that an average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with vector autoregressive spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 24 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: Kai Bischof; Esther M. Borell;pmid: 18618148
Thermal resistance of the coral-zooxanthellae symbiosis has been associated with chronic photoinhibition, increased antioxidant activity and protein repair involving high demands of nitrogen and energy. While the relative importance of heterotrophy as a source of nutrients and energy for cnidarian hosts, and as a means of nitrogen acquisition for their zooxanthellae, is well documented, the effect of feeding on the thermal sensitivity of the symbiotic association has been so far overlooked. Here we examine the effect of zooplankton feeding versus starvation on the bleaching susceptibility and photosynthetic activity of photosystem II (PSII) of zooxanthellae in the scleractinian coral Stylophora pistillata in response to thermal stress (daily temperature rises of 2-3 degrees C) over 10 days, employing pulse-amplitude-modulated chlorophyll fluorometry. Fed and starved corals displayed a decrease in daily maximum potential quantum yield (F (v)/F (m)) of PSII, effective quantum yield (F/F (m)') and relative electron transport rates over the course of 10 days. However after 10 days of exposure to elevated temperature, F (v)/F (m) of fed corals was still 50-70% higher than F (v)/F (m) of starved corals. Starved corals showed strong signs of chronic photoinhibition, which was reflected in a significant decline in nocturnal recovery rates of PSII relative to fed corals. This was paralleled by the progressive inability to dissipate excess excitation energy via non-photochemical quenching (NPQ). After 10 days, NPQ of starved corals had decreased by about 80% relative to fed corals. Feeding treatment had no significant effect on chlorophyll a and c (2) concentrations and zooxanthellae densities, but the mitotic indices were significantly lower in starved than in fed corals. Collectively the results indicate that exogenous food may reduce the photophysiological damage of zooxanthellae that typically leads to bleaching and could therefore play an important role in mediating the thermal resistance of some corals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-008-1102-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-008-1102-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:PANGAEA Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-08. Supplement to: Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H (2013): Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 8(10), e75049
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:EC | SABANAEC| SABANAAuthors: Jorge Alberto Vieira Costa; Luiza Moraes; Gabriel Martins da Rosa; Michele Greque de Morais; +4 AuthorsJorge Alberto Vieira Costa; Luiza Moraes; Gabriel Martins da Rosa; Michele Greque de Morais; I. M. Cara; Lucielen Oliveira Santos; E. Molina Grima; F.G. Acién Fernández;pmid: 32588115
A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L-1 d-1), and CO2 use efficiency ([Formula: see text]) (74.6% w w-1); [Formula: see text]/biomass value obtained at this pH (2.42 [Formula: see text] gbiomass-1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and [Formula: see text]; cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-020-02373-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-020-02373-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 France, Spain, France, United Kingdom, United Kingdom, Germany, Spain, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | BIGSEA, EC | BIOWEB, ARC | Discovery Projects - Gran... +2 projectsEC| BIGSEA ,EC| BIOWEB ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| CERES ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Embargo end date: 10 Dec 2019 Germany, Australia, Australia, AustraliaPublisher:SPIE-Intl Soc Optical Eng Lantz, K; Disterhoft, P; Slusser, J; Gao, W; Berndt, J; Bernhard, G; Bloms, S; Booth, R; Ehramjian, J; Harrison, L; Janson, G; Johnston, P; Kiedron, P; McKenzie, R; Kimlin, Michael G; Neale, P; O'Neill, M; Quang, V V; Seckmeyer, G; Taylor, T; Wuttke, S; Michalsky, J;doi: 10.1117/1.3040299 , 10.15488/8759
The fifth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 13 to 21, 2003 at Table Mountain outside of Boulder, Colorado, USA. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NOAA and included participants from six national and international agencies. The UV measuring instruments included scanning spectroradiometers, spectrographs, and multi-filter radiometers. Synchronized spectral scans of the solar irradiance were performed between June 16 and 20, 2003. The spectral responsivities were determined for each instrument using the participants' lamps and calibration procedures and with NOAA/CUCF standard lamps. This paper covers the scanning spectroradiometers and the one spectrograph. The solar irradiance measurements from the different instruments were deconvolved using a high resolution extraterrestrial solar irradiance and reconvolved with a 1-nm triangular band-pass to account for differences in the bandwidths of the instruments. The measured solar irradiance from the spectroradiometers using the rivmSHIC algorithm on a clear-sky day on DOY 172 at 17.0 UTC (SZA = 30°) had a relative 1-σ standard deviation of +/-2.6 to 3.4% for 300- to 360-nm using the participants' calibration.
Journal of Applied R... arrow_drop_down Electronic Publication Information CenterArticle . 2008Data sources: Electronic Publication Information CenterQueensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.3040299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Applied R... arrow_drop_down Electronic Publication Information CenterArticle . 2008Data sources: Electronic Publication Information CenterQueensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.3040299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Germany, South AfricaPublisher:American Geophysical Union (AGU) Authors: Ioana Ivanciu; Thando Ndarana; Katja Matthes; Sebastian Wahl;doi: 10.1029/2022gl099607
handle: 2263/90452
AbstractRidging South Atlantic Anticyclones contribute an important amount of precipitation over South Africa. Here, we use a global coupled climate model and the ERA5 reanalysis to separate for the first time ridging highs (RHs) based on whether they occur together with Rossby wave breaking (RWB) or not. We show that the former type of RHs are associated with more precipitation than the latter type. The mean sea level pressure anomalies caused by the two types of RHs are characterized by distinct patterns, leading to differences in the flow of moisture‐laden air onto land. We additionally find that RWB mediates the effect of climate change on RHs during the twenty‐first century. Consequently, RHs occurring without RWB exhibit little change, while those occurring with RWB contribute more precipitation over the southern and less precipitation over the northeastern South Africa in the future.
OceanRep arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90452Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl099607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90452Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl099607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 PortugalPublisher:Inter-Research Science Center Funded by:NSF | NSF Postdoctoral Fellowsh...NSF| NSF Postdoctoral Fellowship in Biology FY 2019: Trophic response of marine top predators to decadal changes in food web structureAuthors: Fuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; +34 AuthorsFuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; Wallace, Bryan P.; Godley, Brendan; Brooks, Annabelle M. L; Ceriani, Simona A; Cortés-Gómez, Adriana A.; Dawson, Tiffany M.; Dodge, Kara L.; Flint, Mark; Jensen, Michael P; Komoroske, Lisa M.; Kophamel, Sara; Lettrich, Matthew; Long, Christopher A.; Nelms, Sarah E.; Patrício, Ana Rita; Robinson, Nathan J.; Seminoff, Jeffrey; Ware, Matthew; Whitman, Elizabeth R.; Chevallier, Damien; Clyde-Brockway, Chelsea E.; Korgaonkar, Sumedha A.; Mancini, Agnese; Mello-Fonseca, J; Monsinjon, Jonathan; Neves-Ferreira, Isabella; Ortega, Anna A.; Patel, Samir H.; Pfaller, Joseph B.; Ramirez, Matthew D.; Raposo, Cheila; Smith, Caitlin E.; Abreu-Grobois, F. Alberto; Hays, Graeme C.;doi: 10.3354/esr01278
Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps.
Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSERC, NSF | SGER: Development of Equi..., NSF | Intestinal Bicarbonate Se... +2 projectsNSERC ,NSF| SGER: Development of Equipement and Methodology for Simultaneous Measurements of Epithelial Transport and Oxygen Consumption ,NSF| Intestinal Bicarbonate Secretion in Marine Teleost Fish ,UKRI| Novel driving forces for water transport & osmoregulation: carbonate precipitation and osmotic coefficients ,NSF| Intestinal Bicarbonate Secretion, Osmoregulation and Acid-Base Balance in Marine FishJosi R. Taylor; Frank J. Millero; Villy Christensen; Patrick J. Walsh; Patrick J. Walsh; Simon Jennings; Martin Grosell; Rod W. Wilson;pmid: 19150840
Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.
Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1157972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Norway, Netherlands, Spain, France, Spain, Australia, AustraliaPublisher:Cold Spring Harbor Laboratory Bastien Mérigot; Romain Frelat; Iça Barri; Feriha Tserkova; Jason Conner; Daniela V. Yepsen; Richard L. O'Driscoll; Laurene Pecuchet; Margrete Emblemsvåg; Helle Siegstad; James T. Thorson; Ingrid Spies; Alexander Arkhipkin; Jorge E. Ramos; Richard J. Bell; Luis A. Cubillos; Heino O. Fock; Malin L. Pinsky; Saïkou Oumar Kidé; Menachem Goren; Laurène Mérillet; Laurène Mérillet; Manuel Hidalgo; Aurore Maureaud; Arnaud Auber; Vladimir Kulik; Jón Sólmundsson; Cecilia A. O'Leary; Matthew McLean; Ya’arit Levitt-Barmats; Dori Edelist; Jacqueline Palacios León; Félix Massiot-Granier; Kevin D. Friedland; Itai van Rijn; Kofi Amador; Hamet Diaw Diadhiou; Esther Beukhof; Petur Steingrund; Henrik Gislason; Philippe Ziegler; Wahid Refes; Martin Lindegren; Jérôme Guitton; Ignacio Sobrino; Ian Knuckey; Beyah Meissa; Billy Ernst; Evangelos Tzanatos; Vesselina Mihneva; Marcos Llope; Tarek Hattab; Elitsa Petrova; Jonathan Belmaker; Didier Gascuel; Camilo B. García; Mohamed Lamine Camara; Nir Stern; G. Tserpes; Didier Jouffre; Tracey P. Fairweather; Paraskevas Vasilakopoulos; Matt Koopman; Francis K. E. Nunoo; Fabrice Stephenson; Oren Sonin; Paul A.M. van Zwieten; Hicham Masski; Nancy L. Shackell; Esther Román-Marcote; Mariano Koen-Alonso; Junghwa Choi; Sean C. Anderson; Helle Torp Christensen; Johannes N. Kathena; Renato Guevara-Carrasco;AbstractMarine biota is redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. We further found that single surveys do not cover the full range of the main commercial demersal fish species and that an average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with vector autoregressive spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 24 Powered bymore_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03415602Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.06.18.125930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: Kai Bischof; Esther M. Borell;pmid: 18618148
Thermal resistance of the coral-zooxanthellae symbiosis has been associated with chronic photoinhibition, increased antioxidant activity and protein repair involving high demands of nitrogen and energy. While the relative importance of heterotrophy as a source of nutrients and energy for cnidarian hosts, and as a means of nitrogen acquisition for their zooxanthellae, is well documented, the effect of feeding on the thermal sensitivity of the symbiotic association has been so far overlooked. Here we examine the effect of zooplankton feeding versus starvation on the bleaching susceptibility and photosynthetic activity of photosystem II (PSII) of zooxanthellae in the scleractinian coral Stylophora pistillata in response to thermal stress (daily temperature rises of 2-3 degrees C) over 10 days, employing pulse-amplitude-modulated chlorophyll fluorometry. Fed and starved corals displayed a decrease in daily maximum potential quantum yield (F (v)/F (m)) of PSII, effective quantum yield (F/F (m)') and relative electron transport rates over the course of 10 days. However after 10 days of exposure to elevated temperature, F (v)/F (m) of fed corals was still 50-70% higher than F (v)/F (m) of starved corals. Starved corals showed strong signs of chronic photoinhibition, which was reflected in a significant decline in nocturnal recovery rates of PSII relative to fed corals. This was paralleled by the progressive inability to dissipate excess excitation energy via non-photochemical quenching (NPQ). After 10 days, NPQ of starved corals had decreased by about 80% relative to fed corals. Feeding treatment had no significant effect on chlorophyll a and c (2) concentrations and zooxanthellae densities, but the mitotic indices were significantly lower in starved than in fed corals. Collectively the results indicate that exogenous food may reduce the photophysiological damage of zooxanthellae that typically leads to bleaching and could therefore play an important role in mediating the thermal resistance of some corals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-008-1102-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-008-1102-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:PANGAEA Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-08. Supplement to: Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H (2013): Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 8(10), e75049
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:EC | SABANAEC| SABANAAuthors: Jorge Alberto Vieira Costa; Luiza Moraes; Gabriel Martins da Rosa; Michele Greque de Morais; +4 AuthorsJorge Alberto Vieira Costa; Luiza Moraes; Gabriel Martins da Rosa; Michele Greque de Morais; I. M. Cara; Lucielen Oliveira Santos; E. Molina Grima; F.G. Acién Fernández;pmid: 32588115
A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L-1 d-1), and CO2 use efficiency ([Formula: see text]) (74.6% w w-1); [Formula: see text]/biomass value obtained at this pH (2.42 [Formula: see text] gbiomass-1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and [Formula: see text]; cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-020-02373-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-020-02373-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 France, Spain, France, United Kingdom, United Kingdom, Germany, Spain, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | BIGSEA, EC | BIOWEB, ARC | Discovery Projects - Gran... +2 projectsEC| BIGSEA ,EC| BIOWEB ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| CERES ,NSERCD. P. Tittensor; D. P. Tittensor; T. D. Eddy; T. D. Eddy; H. K. Lotze; E. D. Galbraith; E. D. Galbraith; W. Cheung; M. Barange; M. Barange; J. L. Blanchard; L. Bopp; A. Bryndum-Buchholz; M. Büchner; C. Bulman; D. A. Carozza; V. Christensen; M. Coll; M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday; V. Huber; S. Jennings; S. Jennings; S. Jennings; M. Jones; P. Lehodey; J. S. Link; S. Mackinson; O. Maury; O. Maury; S. Niiranen; R. Oliveros-Ramos; T. Roy; T. Roy; J. Schewe; Y.-J. Shin; Y.-J. Shin; T. Silva; C. A. Stock; J. Steenbeek; P. J. Underwood; J. Volkholz; J. R. Watson; N. D. Walker;handle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Precht, William F.; Aronson, Richard B.; Gardner, Toby A.; Gill, Jennifer A.; Hawkins, Julie P.; Hernández-Delgado, Edwin A.; Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.; Murdoch, Thaddeus J.T.; Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;pmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Embargo end date: 10 Dec 2019 Germany, Australia, Australia, AustraliaPublisher:SPIE-Intl Soc Optical Eng Lantz, K; Disterhoft, P; Slusser, J; Gao, W; Berndt, J; Bernhard, G; Bloms, S; Booth, R; Ehramjian, J; Harrison, L; Janson, G; Johnston, P; Kiedron, P; McKenzie, R; Kimlin, Michael G; Neale, P; O'Neill, M; Quang, V V; Seckmeyer, G; Taylor, T; Wuttke, S; Michalsky, J;doi: 10.1117/1.3040299 , 10.15488/8759
The fifth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 13 to 21, 2003 at Table Mountain outside of Boulder, Colorado, USA. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NOAA and included participants from six national and international agencies. The UV measuring instruments included scanning spectroradiometers, spectrographs, and multi-filter radiometers. Synchronized spectral scans of the solar irradiance were performed between June 16 and 20, 2003. The spectral responsivities were determined for each instrument using the participants' lamps and calibration procedures and with NOAA/CUCF standard lamps. This paper covers the scanning spectroradiometers and the one spectrograph. The solar irradiance measurements from the different instruments were deconvolved using a high resolution extraterrestrial solar irradiance and reconvolved with a 1-nm triangular band-pass to account for differences in the bandwidths of the instruments. The measured solar irradiance from the spectroradiometers using the rivmSHIC algorithm on a clear-sky day on DOY 172 at 17.0 UTC (SZA = 30°) had a relative 1-σ standard deviation of +/-2.6 to 3.4% for 300- to 360-nm using the participants' calibration.
Journal of Applied R... arrow_drop_down Electronic Publication Information CenterArticle . 2008Data sources: Electronic Publication Information CenterQueensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.3040299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Applied R... arrow_drop_down Electronic Publication Information CenterArticle . 2008Data sources: Electronic Publication Information CenterQueensland University of Technology: QUT ePrintsArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/1.3040299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu