Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
328 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • 13. Climate action
  • 15. Life on land
  • 11. Sustainability
  • European Marine Science

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Augusto, Alessandra;
    Augusto, Alessandra
    ORCID
    Harvested from ORCID Public Data File

    Augusto, Alessandra in OpenAIRE
    orcid Ramaglia, Andressa C.;
    Ramaglia, Andressa C.
    ORCID
    Harvested from ORCID Public Data File

    Ramaglia, Andressa C. in OpenAIRE
    Mantoan, Paulo V.;

    AbstractClimate changes are altering the chemistry of the oceans, and knowing their effects on the biology of animals is urgent. Since the physiological responses of crustaceans may be different given the seasons of the year, this work evaluated the synergistic effect of ocean acidification and seasonality on the physiology of the sea-bob shrimp,Xiphopenaeus kroyeri. Experimental groups were exposed for 5 days to two levels of pH, representing present-day mean ambient conditions (pH 8.0) and distant-future conditions (pH 7.3) during the summer and winter. Metabolism, nitrogen excretion, energy type and storage were determined, respectively, by oxygen consumption, ammonia excretion, atomic ratio O/N and hepatosomatic index. The reduction of pH resulted in a decrease of about 30% in theX. kroyerimetabolism during the summer and winter. Nitrogen excretion (reduction of 40%) and hepatosomatic index (increase of 120%) showed to be altered in animals exposed to reduced pH only throughout summer. Regardless of pH and seasons of the year, animals use mainly proteins as energy substrate and they do not show mortality. The increase of the hepatosomatic index, indicator of the accumulation of energy reserves, associated with metabolism reduction, suggests the suppression of activities that demand energy expenditure. The consequences of the physiological alterations observed may include decreases in growth and reproduction rate and displacement of populations to more appropriate conditions. The results might be associated with a set of factors resulting from the exposure to reduced pH, the synergy between pH and temperature, but also with a pattern of different physiological responses that may occur according to seasonality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Crustaceana
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Crustaceana
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Augusto, Alessandra;
    Augusto, Alessandra
    ORCID
    Harvested from ORCID Public Data File

    Augusto, Alessandra in OpenAIRE
    orcid Ramaglia, Andressa C.;
    Ramaglia, Andressa C.
    ORCID
    Harvested from ORCID Public Data File

    Ramaglia, Andressa C. in OpenAIRE
    Mantoan, Paulo V.;

    AbstractClimate changes are altering the chemistry of the oceans, and knowing their effects on the biology of animals is urgent. Since the physiological responses of crustaceans may be different given the seasons of the year, this work evaluated the synergistic effect of ocean acidification and seasonality on the physiology of the sea-bob shrimp,Xiphopenaeus kroyeri. Experimental groups were exposed for 5 days to two levels of pH, representing present-day mean ambient conditions (pH 8.0) and distant-future conditions (pH 7.3) during the summer and winter. Metabolism, nitrogen excretion, energy type and storage were determined, respectively, by oxygen consumption, ammonia excretion, atomic ratio O/N and hepatosomatic index. The reduction of pH resulted in a decrease of about 30% in theX. kroyerimetabolism during the summer and winter. Nitrogen excretion (reduction of 40%) and hepatosomatic index (increase of 120%) showed to be altered in animals exposed to reduced pH only throughout summer. Regardless of pH and seasons of the year, animals use mainly proteins as energy substrate and they do not show mortality. The increase of the hepatosomatic index, indicator of the accumulation of energy reserves, associated with metabolism reduction, suggests the suppression of activities that demand energy expenditure. The consequences of the physiological alterations observed may include decreases in growth and reproduction rate and displacement of populations to more appropriate conditions. The results might be associated with a set of factors resulting from the exposure to reduced pH, the synergy between pH and temperature, but also with a pattern of different physiological responses that may occur according to seasonality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Crustaceana
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Crustaceana
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arvola, Lauri; George, Glen; Livingstone, David M.; orcid Jarvinen, Marko;
    Jarvinen, Marko
    ORCID
    Harvested from ORCID Public Data File

    Jarvinen, Marko in OpenAIRE
    +7 Authors

    Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-90...
    Part of book or chapter of book . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NERC Open Research Archive
    Part of book or chapter of book . 2010
    addClaim
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-90...
      Part of book or chapter of book . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NERC Open Research Archive
      Part of book or chapter of book . 2010
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arvola, Lauri; George, Glen; Livingstone, David M.; orcid Jarvinen, Marko;
    Jarvinen, Marko
    ORCID
    Harvested from ORCID Public Data File

    Jarvinen, Marko in OpenAIRE
    +7 Authors

    Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-90...
    Part of book or chapter of book . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NERC Open Research Archive
    Part of book or chapter of book . 2010
    addClaim
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-90...
      Part of book or chapter of book . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NERC Open Research Archive
      Part of book or chapter of book . 2010
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Appleby, P. G.;
    Appleby, P. G.
    ORCID
    Harvested from ORCID Public Data File

    Appleby, P. G. in OpenAIRE
    Jones, V. J.; Ellis-Evans, J. C.;

    Sediment cores from three lakes (Moss, Sombre and Heywood) in the maritime Antarctic (Signy Island, South Orkney Islands) have been successfully dated radiometrically by210Pb and137Cs. The core inventories of both fallout radionuclides are an order of magnitude higher than that which can be supported by the direct atmospheric flux at this latitude. The elevated values may be explained by fallout onto the catchment during the winter being delivered directly to the lakes during the annual thaw. Two of the lakes (Sombre and Heywood) show marked increases in sediment accumulation afterc. 1950. This appears to be associated with a documented rise in temperature in the South Orkney Islands, which has caused extensive deglaciation at Signy Island.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Paleolimnology
    Article . 1995 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Paleolimnology
      Article . 1995 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Appleby, P. G.;
    Appleby, P. G.
    ORCID
    Harvested from ORCID Public Data File

    Appleby, P. G. in OpenAIRE
    Jones, V. J.; Ellis-Evans, J. C.;

    Sediment cores from three lakes (Moss, Sombre and Heywood) in the maritime Antarctic (Signy Island, South Orkney Islands) have been successfully dated radiometrically by210Pb and137Cs. The core inventories of both fallout radionuclides are an order of magnitude higher than that which can be supported by the direct atmospheric flux at this latitude. The elevated values may be explained by fallout onto the catchment during the winter being delivered directly to the lakes during the annual thaw. Two of the lakes (Sombre and Heywood) show marked increases in sediment accumulation afterc. 1950. This appears to be associated with a documented rise in temperature in the South Orkney Islands, which has caused extensive deglaciation at Signy Island.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Paleolimnology
    Article . 1995 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Paleolimnology
      Article . 1995 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roscoe, H.K.; orcid bw Marshall, G.J.;
    Marshall, G.J.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Marshall, G.J. in OpenAIRE
    orcid bw King, J.C.;
    King, J.C.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    King, J.C. in OpenAIRE

    AbstractStratospheric change associated with the Antarctic ozone hole is clearly implicated in changing surface climate near 65°S in late summer, in both measurements and models, via downward propagation of height anomalies following the final warming. But one of the largest changes in surface temperature in Antarctica has occurred in the Antarctic Peninsula at 60 to 65°S in winter, and most of the change at 65°S occurred before the ozone hole. Stratospheric change can cause tropospheric change in Antarctic winter by modifying the reflection and refraction of planetary waves, whereby a stronger stratospheric vortex moves the tropospheric jets polewards, which can modify the Southern Annular Mode (SAM) in surface pressure that forces the tropospheric circumpolar winds. We examine stratospheric influence on the SAM in winter by inter‐annual correlation of the SAM with the solar‐cycle and volcanic aerosols, which act to change forcing of the stratospheric vortex in winter. Correlations are a maximum in June (midwinter) and are significant then, but are poor averaged over winter months. Hence the potential of change in the stratosphere to change Antarctic tropospheric climate in winter by dynamical means is low. This negative result is important given the proven high potential for change in summer by dynamical means. Copyright © 2006 Royal Meteorological Society.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Quarterly Journal of the Royal Meteorological Society
    Article . 2006 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Quarterly Journal of the Royal Meteorological Society
      Article . 2006 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roscoe, H.K.; orcid bw Marshall, G.J.;
    Marshall, G.J.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Marshall, G.J. in OpenAIRE
    orcid bw King, J.C.;
    King, J.C.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    King, J.C. in OpenAIRE

    AbstractStratospheric change associated with the Antarctic ozone hole is clearly implicated in changing surface climate near 65°S in late summer, in both measurements and models, via downward propagation of height anomalies following the final warming. But one of the largest changes in surface temperature in Antarctica has occurred in the Antarctic Peninsula at 60 to 65°S in winter, and most of the change at 65°S occurred before the ozone hole. Stratospheric change can cause tropospheric change in Antarctic winter by modifying the reflection and refraction of planetary waves, whereby a stronger stratospheric vortex moves the tropospheric jets polewards, which can modify the Southern Annular Mode (SAM) in surface pressure that forces the tropospheric circumpolar winds. We examine stratospheric influence on the SAM in winter by inter‐annual correlation of the SAM with the solar‐cycle and volcanic aerosols, which act to change forcing of the stratospheric vortex in winter. Correlations are a maximum in June (midwinter) and are significant then, but are poor averaged over winter months. Hence the potential of change in the stratosphere to change Antarctic tropospheric climate in winter by dynamical means is low. This negative result is important given the proven high potential for change in summer by dynamical means. Copyright © 2006 Royal Meteorological Society.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Quarterly Journal of the Royal Meteorological Society
    Article . 2006 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Quarterly Journal of the Royal Meteorological Society
      Article . 2006 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fritz Schiemer; orcid Hans-Otto Pörtner;
    Hans-Otto Pörtner
    ORCID
    Harvested from ORCID Public Data File

    Hans-Otto Pörtner in OpenAIRE
    orcid Chris M. Wood;
    Chris M. Wood
    ORCID
    Harvested from ORCID Public Data File

    Chris M. Wood in OpenAIRE
    orcid Patricia M. Schulte;
    Patricia M. Schulte
    ORCID
    Harvested from ORCID Public Data File

    Patricia M. Schulte in OpenAIRE

    Current shifts in ecosystem composition and function emphasize the need for an understanding of the links between environmental factors and organism fitness and tolerance. The examples discussed here illustrate how recent progress in the field of comparative physiology may provide a better mechanistic understanding of the ecological concepts of the fundamental and realized niches and thus provide insights into the impacts of anthropogenic disturbance. Here we argue that, as a link between physiological and ecological indicators of organismal performance, the mechanisms shaping aerobic scope and passive tolerance set the dimensions of an animal's niche, here defined as its capacity to survive, grow, behave, and interact with other species. We demonstrate how comparative studies of cod or killifish populations in a latitudinal cline have unraveled mitochondrial mechanisms involved in establishing a species' niche, performance, and energy budget. Riverine fish exemplify how the performance windows of various developmental stages follow the dynamic regimes of both seasonal temperatures and river hydrodynamics, as synergistic challenges. Finally, studies of species in extreme environments, such as the tilapia of Lake Magadi, illustrate how on evolutionary timescales functional and morphological shifts can occur, associated with new specializations. We conclude that research on the processes and time course of adaptations suitable to overcome current niche limits is urgently needed to assess the resilience of species and ecosystems to human impact, including the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiological and Bi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physiological and Biochemical Zoology
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim
    101
    citations101
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fritz Schiemer; orcid Hans-Otto Pörtner;
    Hans-Otto Pörtner
    ORCID
    Harvested from ORCID Public Data File

    Hans-Otto Pörtner in OpenAIRE
    orcid Chris M. Wood;
    Chris M. Wood
    ORCID
    Harvested from ORCID Public Data File

    Chris M. Wood in OpenAIRE
    orcid Patricia M. Schulte;
    Patricia M. Schulte
    ORCID
    Harvested from ORCID Public Data File

    Patricia M. Schulte in OpenAIRE

    Current shifts in ecosystem composition and function emphasize the need for an understanding of the links between environmental factors and organism fitness and tolerance. The examples discussed here illustrate how recent progress in the field of comparative physiology may provide a better mechanistic understanding of the ecological concepts of the fundamental and realized niches and thus provide insights into the impacts of anthropogenic disturbance. Here we argue that, as a link between physiological and ecological indicators of organismal performance, the mechanisms shaping aerobic scope and passive tolerance set the dimensions of an animal's niche, here defined as its capacity to survive, grow, behave, and interact with other species. We demonstrate how comparative studies of cod or killifish populations in a latitudinal cline have unraveled mitochondrial mechanisms involved in establishing a species' niche, performance, and energy budget. Riverine fish exemplify how the performance windows of various developmental stages follow the dynamic regimes of both seasonal temperatures and river hydrodynamics, as synergistic challenges. Finally, studies of species in extreme environments, such as the tilapia of Lake Magadi, illustrate how on evolutionary timescales functional and morphological shifts can occur, associated with new specializations. We conclude that research on the processes and time course of adaptations suitable to overcome current niche limits is urgently needed to assess the resilience of species and ecosystems to human impact, including the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiological and Bi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physiological and Biochemical Zoology
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim
    101
    citations101
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Santibanez-Aguascalientes, Norma A.;
    Santibanez-Aguascalientes, Norma A.
    ORCID
    Harvested from ORCID Public Data File

    Santibanez-Aguascalientes, Norma A. in OpenAIRE
    orcid Borja, Angel;
    Borja, Angel
    ORCID
    Harvested from ORCID Public Data File

    Borja, Angel in OpenAIRE
    Ardisson, Pedro-Luis;

    Abstract Currently, in tropical regions such as the southern Gulf of Mexico (sGM), there are no legal guidelines for assessing the quality of the seafloor. We aim to determine whether the seafloor sustainability of the sGM is evenly distributed, based on pressures that human activities produce upon the marine coastal environment, represented by the water quality, sediment quality, and benthic fauna. We analysed physicochemical characteristics and benthic fauna at 183 sites, sampled during five annual surveys (rainy and dry seasons) in the sublittoral and bathyal zones. Socioeconomic indicators were obtained from official national censuses. We calculated a pressure index (PI) based on water quality, sediment quality, and socioeconomic indicators. PI values ranged from 1 to 2.67, with the highest values being observed at coastal sites. Our approach determined that the benthic quality in the study area was related to depth and oil industry influence and that the sGM's seafloor sustainability was unevenly distributed. For sustainability, we determined specific situations for each site or group of sites: (1) sensitive - sites with high benthic quality and low PI; (2) naturally variable - sites for which the poor benthic quality was not related to the PI; (3) degraded - sites with poor benthic quality and high PI; and (4) resilient - sites with good benthic quality and high PI. This differentiation in sustainability situations might be used as a reference for linking socioeconomic activities in the coasts with the ecological status of marine environments from shallow to deep.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Santibanez-Aguascalientes, Norma A.;
    Santibanez-Aguascalientes, Norma A.
    ORCID
    Harvested from ORCID Public Data File

    Santibanez-Aguascalientes, Norma A. in OpenAIRE
    orcid Borja, Angel;
    Borja, Angel
    ORCID
    Harvested from ORCID Public Data File

    Borja, Angel in OpenAIRE
    Ardisson, Pedro-Luis;

    Abstract Currently, in tropical regions such as the southern Gulf of Mexico (sGM), there are no legal guidelines for assessing the quality of the seafloor. We aim to determine whether the seafloor sustainability of the sGM is evenly distributed, based on pressures that human activities produce upon the marine coastal environment, represented by the water quality, sediment quality, and benthic fauna. We analysed physicochemical characteristics and benthic fauna at 183 sites, sampled during five annual surveys (rainy and dry seasons) in the sublittoral and bathyal zones. Socioeconomic indicators were obtained from official national censuses. We calculated a pressure index (PI) based on water quality, sediment quality, and socioeconomic indicators. PI values ranged from 1 to 2.67, with the highest values being observed at coastal sites. Our approach determined that the benthic quality in the study area was related to depth and oil industry influence and that the sGM's seafloor sustainability was unevenly distributed. For sustainability, we determined specific situations for each site or group of sites: (1) sensitive - sites with high benthic quality and low PI; (2) naturally variable - sites for which the poor benthic quality was not related to the PI; (3) degraded - sites with poor benthic quality and high PI; and (4) resilient - sites with good benthic quality and high PI. This differentiation in sustainability situations might be used as a reference for linking socioeconomic activities in the coasts with the ecological status of marine environments from shallow to deep.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mani Murali R.; Ankita M.; Ankita M.; orcid Vethamony P.;
    Vethamony P.
    ORCID
    Harvested from ORCID Public Data File

    Vethamony P. in OpenAIRE

    The occurrence of the PHAILIN, HUDHUD cyclones in the Bay of Bengal region highlights the importance of continuous monitoring of this area from the coastal vulnerability perspective. The increase in the magnitude and frequency of coastal disasters is estimated to cause disastrous effects on the ever-increasing coastal population as well as the natural resources that are available in these regions. In this paper, the coastal vulnerability of a part of the Odisha coast, including the districts of Kendrapara and Jagatsinghpur, has been assessed on a relatively finer scale. These districts are reported to be the most vulnerable areas along the Odisha coast. A set of Physical–geological parameters and socio-economic factors are used to derive the vulnerability using AHP, and vulnerability maps are prepared to demarcate areas with different vulnerability. The Coastal Vulnerability Index (CVI) finally is grouped into the three vulnerability classes for the final coastal vulnerability map. Depending on this classification, approx. 35% of the coastline comes under high vulnerability, 39% under Medium and 26% under low vulnerability class. The coastline adjoining, Teisimouza, Barunei, Paradip, are the highly vulnerable zones whereas the shoreline between Jatardharmohan and Saharabedi comes under intermediate vulnerability zone. The results obtained can be used for prioritization of the most sensitive areas in this coastal belt for better strategic management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Coastal Conservation
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Coastal Conservation
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mani Murali R.; Ankita M.; Ankita M.; orcid Vethamony P.;
    Vethamony P.
    ORCID
    Harvested from ORCID Public Data File

    Vethamony P. in OpenAIRE

    The occurrence of the PHAILIN, HUDHUD cyclones in the Bay of Bengal region highlights the importance of continuous monitoring of this area from the coastal vulnerability perspective. The increase in the magnitude and frequency of coastal disasters is estimated to cause disastrous effects on the ever-increasing coastal population as well as the natural resources that are available in these regions. In this paper, the coastal vulnerability of a part of the Odisha coast, including the districts of Kendrapara and Jagatsinghpur, has been assessed on a relatively finer scale. These districts are reported to be the most vulnerable areas along the Odisha coast. A set of Physical–geological parameters and socio-economic factors are used to derive the vulnerability using AHP, and vulnerability maps are prepared to demarcate areas with different vulnerability. The Coastal Vulnerability Index (CVI) finally is grouped into the three vulnerability classes for the final coastal vulnerability map. Depending on this classification, approx. 35% of the coastline comes under high vulnerability, 39% under Medium and 26% under low vulnerability class. The coastline adjoining, Teisimouza, Barunei, Paradip, are the highly vulnerable zones whereas the shoreline between Jatardharmohan and Saharabedi comes under intermediate vulnerability zone. The results obtained can be used for prioritization of the most sensitive areas in this coastal belt for better strategic management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Coastal Conservation
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Coastal Conservation
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John Beardall; orcid Minhan Dai;
    Minhan Dai
    ORCID
    Harvested from ORCID Public Data File

    Minhan Dai in OpenAIRE
    Futian Li; orcid Dong Yan;
    Dong Yan
    ORCID
    Harvested from ORCID Public Data File

    Dong Yan in OpenAIRE
    +11 Authors

    A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on bloom formation by phytoplankton species previously studied in laboratory-based ocean acidification experiments, to determine if the indoor-grown species performed similarly in mesocosms under more realistic environmental conditions. We measured biomass, primary productivity and particulate organic carbon (POC) as well as particulate organic nitrogen (PON). Phaeodactylum tricornutum outcompeted Thalassiosira weissflogii and Emiliania huxleyi, comprising more than 99% of the final biomass. Mainly through a capacity to tolerate nutrient-limited situations, P. tricornutum showed a powerful sustained presence during the plateau phase of growth. Significant differences between high and low CO2 treatments were found in cell concentration, cumulative primary productivity and POC in the plateau phase but not during the exponential phase of growth. Compared to the low pCO2 (LC) treatment, POC increased by 45.8-101.9% in the high pCO2 (HC) treated cells during the bloom period. Furthermore, respiratory carbon losses of gross primary productivity were found to comprise 39-64% for the LC and 31-41% for the HC mesocosms (daytime C fixation) in phase II. Our results suggest that the duration and characteristics of a diatom bloom can be affected by elevated pCO2. Effects of elevated pCO2 observed in the laboratory cannot be reliably extrapolated to large scale mesocosms with multiple influencing factors, especially during intense algal blooms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Environmental Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Environmental Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John Beardall; orcid Minhan Dai;
    Minhan Dai
    ORCID
    Harvested from ORCID Public Data File

    Minhan Dai in OpenAIRE
    Futian Li; orcid Dong Yan;
    Dong Yan
    ORCID
    Harvested from ORCID Public Data File

    Dong Yan in OpenAIRE
    +11 Authors

    A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on bloom formation by phytoplankton species previously studied in laboratory-based ocean acidification experiments, to determine if the indoor-grown species performed similarly in mesocosms under more realistic environmental conditions. We measured biomass, primary productivity and particulate organic carbon (POC) as well as particulate organic nitrogen (PON). Phaeodactylum tricornutum outcompeted Thalassiosira weissflogii and Emiliania huxleyi, comprising more than 99% of the final biomass. Mainly through a capacity to tolerate nutrient-limited situations, P. tricornutum showed a powerful sustained presence during the plateau phase of growth. Significant differences between high and low CO2 treatments were found in cell concentration, cumulative primary productivity and POC in the plateau phase but not during the exponential phase of growth. Compared to the low pCO2 (LC) treatment, POC increased by 45.8-101.9% in the high pCO2 (HC) treated cells during the bloom period. Furthermore, respiratory carbon losses of gross primary productivity were found to comprise 39-64% for the LC and 31-41% for the HC mesocosms (daytime C fixation) in phase II. Our results suggest that the duration and characteristics of a diatom bloom can be affected by elevated pCO2. Effects of elevated pCO2 observed in the laboratory cannot be reliably extrapolated to large scale mesocosms with multiple influencing factors, especially during intense algal blooms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Environmental Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Environmental Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Konstantinos Stefanidis;
    Konstantinos Stefanidis
    ORCID
    Harvested from ORCID Public Data File

    Konstantinos Stefanidis in OpenAIRE
    orcid George Varlas;
    George Varlas
    ORCID
    Harvested from ORCID Public Data File

    George Varlas in OpenAIRE
    Aikaterini Vourka; orcid Anastasios Papadopoulos;
    Anastasios Papadopoulos
    ORCID
    Harvested from ORCID Public Data File

    Anastasios Papadopoulos in OpenAIRE
    +1 Authors

    Understanding the climatic drivers of eutrophication is critical for lake management under the prism of the global change. Yet the complex interplay between climatic variables and lake processes makes prediction of phytoplankton biomass a rather difficult task. Quantifying the relative influence of climate-related variables on the regulation of phytoplankton biomass requires modelling approaches that use extensive field measurements paired with accurate meteorological observations. In this study we used climate and lake related variables obtained from the ERA5-Land reanalysis dataset combined with a large dataset of in-situ measurements of chlorophyll-a and phytoplankton biomass from 50 water bodies to develop models of phytoplankton related responses as functions of the climate reanalysis data. We used chlorophyll-a and phytoplankton biomass as response metrics of phytoplankton growth and we employed two different modelling techniques, boosted regression trees (BRT) and generalized additive models for location scale and shape (GAMLSS). According to our results, the fitted models had a relatively high explanatory power and predictive performance. Boosted regression trees had a high pseudo R2 with the type of the lake, the total layer temperature, and the mix-layer depth being the three predictors with the higher relative influence. The best GAMLSS model retained mix-layer depth, mix-layer temperature, total layer temperature, total runoff and 10-m wind speed as significant predictors (p<0.001). Regarding the phytoplankton biomass both modelling approaches had less explanatory power than those for chlorophyll-a. Concerning the predictive performance of the models both the BRT and GAMLSS models for chlorophyll-a outperformed those for phytoplankton biomass. Overall, we consider these findings promising for future limnological studies as they bring forth new perspectives in modelling ecosystem responses to a wide range of climate and lake variables. As a concluding remark, climate reanalysis can be an extremely useful asset for lake research and management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    32
    citations32
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Konstantinos Stefanidis;
    Konstantinos Stefanidis
    ORCID
    Harvested from ORCID Public Data File

    Konstantinos Stefanidis in OpenAIRE
    orcid George Varlas;
    George Varlas
    ORCID
    Harvested from ORCID Public Data File

    George Varlas in OpenAIRE
    Aikaterini Vourka; orcid Anastasios Papadopoulos;
    Anastasios Papadopoulos
    ORCID
    Harvested from ORCID Public Data File

    Anastasios Papadopoulos in OpenAIRE
    +1 Authors

    Understanding the climatic drivers of eutrophication is critical for lake management under the prism of the global change. Yet the complex interplay between climatic variables and lake processes makes prediction of phytoplankton biomass a rather difficult task. Quantifying the relative influence of climate-related variables on the regulation of phytoplankton biomass requires modelling approaches that use extensive field measurements paired with accurate meteorological observations. In this study we used climate and lake related variables obtained from the ERA5-Land reanalysis dataset combined with a large dataset of in-situ measurements of chlorophyll-a and phytoplankton biomass from 50 water bodies to develop models of phytoplankton related responses as functions of the climate reanalysis data. We used chlorophyll-a and phytoplankton biomass as response metrics of phytoplankton growth and we employed two different modelling techniques, boosted regression trees (BRT) and generalized additive models for location scale and shape (GAMLSS). According to our results, the fitted models had a relatively high explanatory power and predictive performance. Boosted regression trees had a high pseudo R2 with the type of the lake, the total layer temperature, and the mix-layer depth being the three predictors with the higher relative influence. The best GAMLSS model retained mix-layer depth, mix-layer temperature, total layer temperature, total runoff and 10-m wind speed as significant predictors (p<0.001). Regarding the phytoplankton biomass both modelling approaches had less explanatory power than those for chlorophyll-a. Concerning the predictive performance of the models both the BRT and GAMLSS models for chlorophyll-a outperformed those for phytoplankton biomass. Overall, we consider these findings promising for future limnological studies as they bring forth new perspectives in modelling ecosystem responses to a wide range of climate and lake variables. As a concluding remark, climate reanalysis can be an extremely useful asset for lake research and management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    32
    citations32
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jon Barry; orcid Marta Vannoni;
    Marta Vannoni
    ORCID
    Harvested from ORCID Public Data File

    Marta Vannoni in OpenAIRE
    Dave Sheahan; orcid Véronique Créach;
    Véronique Créach
    ORCID
    Harvested from ORCID Public Data File

    Véronique Créach in OpenAIRE

    Chlorination is a widely used antifouling method for freshwater and marine applications. Chlorine added to seawater reacts to form oxidants that are toxic to biofouling organisms. Further, the oxidants that result are short-lived, but may nevertheless affect non-target species in waterbodies receiving the antifouling effluent. This study evaluated the toxicity of chlorinated seawater (e.g. following sodium hypochlorite addition) on two different species of marine benthic diatoms (Achnanthes spp., and Navicula pelliculosa), which are representative of microphytobenthos communities - an important component in coastal habitats that may be exposed to chlorinated seawater. To evaluate the growth inhibition over a 72 h period, algae were immobilised in alginate beads and exposed to different levels of chlorination in a flow through system. Growth rates and physiological condition of the microalgae were evaluated using a Fast Repetition Rate fluorometer (FRRf). To determine whether alginate influenced the sensitivity of algal response, studies were also conducted in a static test system (without renewal of test solutions) using both free cells and immobilised cells with initial chlorine added to achieve a similar range of concentrations as those used in the flow-through study. Within the first hour of the exposure period there was an indication that, for both species, the free algal cells in the static system were more sensitive to exposure to chlorinated seawater than were alginate-immobilised cells in the flow through system. Immobilised cells in a static system with a single addition of chlorine were also less sensitive to chlorination than free algal cells. However, for periods of 24 h or more due to decay of TRO in the static system the exposure of immobilised algae in the flow through system had a greater impact and hence lower effect concentrations. For the flow-through studies Achnanthes spp. was the most sensitive after 72 h exposure with a potential no effect concentration EC10 value of 0.02 mg l-1 as Cl2 equivalents expressed as total residual oxidants (TRO) compared 0.04 mg l-1 TRO for N. pelliculosa. Immobilisation of algal cells in alginate was found to be an effective means of determining the impact of chlorination and is likely to be effective for other non-persistent substances. Based on the data produced, the extent and significance of ecological effects of chlorination upon algal species typical of microphytobenthos are likely to be limited providing discharges comply with a maximum allowable concentration of 0.01 mg l-1 TRO at the edge of an agreed mixing zone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jon Barry; orcid Marta Vannoni;
    Marta Vannoni
    ORCID
    Harvested from ORCID Public Data File

    Marta Vannoni in OpenAIRE
    Dave Sheahan; orcid Véronique Créach;
    Véronique Créach
    ORCID
    Harvested from ORCID Public Data File

    Véronique Créach in OpenAIRE

    Chlorination is a widely used antifouling method for freshwater and marine applications. Chlorine added to seawater reacts to form oxidants that are toxic to biofouling organisms. Further, the oxidants that result are short-lived, but may nevertheless affect non-target species in waterbodies receiving the antifouling effluent. This study evaluated the toxicity of chlorinated seawater (e.g. following sodium hypochlorite addition) on two different species of marine benthic diatoms (Achnanthes spp., and Navicula pelliculosa), which are representative of microphytobenthos communities - an important component in coastal habitats that may be exposed to chlorinated seawater. To evaluate the growth inhibition over a 72 h period, algae were immobilised in alginate beads and exposed to different levels of chlorination in a flow through system. Growth rates and physiological condition of the microalgae were evaluated using a Fast Repetition Rate fluorometer (FRRf). To determine whether alginate influenced the sensitivity of algal response, studies were also conducted in a static test system (without renewal of test solutions) using both free cells and immobilised cells with initial chlorine added to achieve a similar range of concentrations as those used in the flow-through study. Within the first hour of the exposure period there was an indication that, for both species, the free algal cells in the static system were more sensitive to exposure to chlorinated seawater than were alginate-immobilised cells in the flow through system. Immobilised cells in a static system with a single addition of chlorine were also less sensitive to chlorination than free algal cells. However, for periods of 24 h or more due to decay of TRO in the static system the exposure of immobilised algae in the flow through system had a greater impact and hence lower effect concentrations. For the flow-through studies Achnanthes spp. was the most sensitive after 72 h exposure with a potential no effect concentration EC10 value of 0.02 mg l-1 as Cl2 equivalents expressed as total residual oxidants (TRO) compared 0.04 mg l-1 TRO for N. pelliculosa. Immobilisation of algal cells in alginate was found to be an effective means of determining the impact of chlorination and is likely to be effective for other non-persistent substances. Based on the data produced, the extent and significance of ecological effects of chlorination upon algal species typical of microphytobenthos are likely to be limited providing discharges comply with a maximum allowable concentration of 0.01 mg l-1 TRO at the edge of an agreed mixing zone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph