Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
478 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • 13. Climate action
  • 14. Life underwater
  • European Marine Science

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhou, Y.;
    Zhou, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhou, Y. in OpenAIRE
    Ma, J.; orcid Zhang, Y.;
    Zhang, Y.
    ORCID
    Harvested from ORCID Public Data File

    Zhang, Y. in OpenAIRE
    Qin, B.; +6 Authors

    This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    161
    citations161
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Augusto, Alessandra;
    Augusto, Alessandra
    ORCID
    Harvested from ORCID Public Data File

    Augusto, Alessandra in OpenAIRE
    orcid Ramaglia, Andressa C.;
    Ramaglia, Andressa C.
    ORCID
    Harvested from ORCID Public Data File

    Ramaglia, Andressa C. in OpenAIRE
    Mantoan, Paulo V.;

    AbstractClimate changes are altering the chemistry of the oceans, and knowing their effects on the biology of animals is urgent. Since the physiological responses of crustaceans may be different given the seasons of the year, this work evaluated the synergistic effect of ocean acidification and seasonality on the physiology of the sea-bob shrimp,Xiphopenaeus kroyeri. Experimental groups were exposed for 5 days to two levels of pH, representing present-day mean ambient conditions (pH 8.0) and distant-future conditions (pH 7.3) during the summer and winter. Metabolism, nitrogen excretion, energy type and storage were determined, respectively, by oxygen consumption, ammonia excretion, atomic ratio O/N and hepatosomatic index. The reduction of pH resulted in a decrease of about 30% in theX. kroyerimetabolism during the summer and winter. Nitrogen excretion (reduction of 40%) and hepatosomatic index (increase of 120%) showed to be altered in animals exposed to reduced pH only throughout summer. Regardless of pH and seasons of the year, animals use mainly proteins as energy substrate and they do not show mortality. The increase of the hepatosomatic index, indicator of the accumulation of energy reserves, associated with metabolism reduction, suggests the suppression of activities that demand energy expenditure. The consequences of the physiological alterations observed may include decreases in growth and reproduction rate and displacement of populations to more appropriate conditions. The results might be associated with a set of factors resulting from the exposure to reduced pH, the synergy between pH and temperature, but also with a pattern of different physiological responses that may occur according to seasonality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Crustaceana
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade Estadua...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Crustaceana
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arvola, Lauri; George, Glen; Livingstone, David M.; orcid Jarvinen, Marko;
    Jarvinen, Marko
    ORCID
    Harvested from ORCID Public Data File

    Jarvinen, Marko in OpenAIRE
    +7 Authors

    Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-90...
    Part of book or chapter of book . 2009 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NERC Open Research Archive
    Part of book or chapter of book . 2010
    addClaim
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-90...
      Part of book or chapter of book . 2009 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NERC Open Research Archive
      Part of book or chapter of book . 2010
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Appleby, P. G.;
    Appleby, P. G.
    ORCID
    Harvested from ORCID Public Data File

    Appleby, P. G. in OpenAIRE
    Jones, V. J.; Ellis-Evans, J. C.;

    Sediment cores from three lakes (Moss, Sombre and Heywood) in the maritime Antarctic (Signy Island, South Orkney Islands) have been successfully dated radiometrically by210Pb and137Cs. The core inventories of both fallout radionuclides are an order of magnitude higher than that which can be supported by the direct atmospheric flux at this latitude. The elevated values may be explained by fallout onto the catchment during the winter being delivered directly to the lakes during the annual thaw. Two of the lakes (Sombre and Heywood) show marked increases in sediment accumulation afterc. 1950. This appears to be associated with a documented rise in temperature in the South Orkney Islands, which has caused extensive deglaciation at Signy Island.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Paleolimnology
    Article . 1995 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Paleolimn...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Paleolimnology
      Article . 1995 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roscoe, H.K.; orcid bw Marshall, G.J.;
    Marshall, G.J.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Marshall, G.J. in OpenAIRE
    orcid bw King, J.C.;
    King, J.C.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    King, J.C. in OpenAIRE

    AbstractStratospheric change associated with the Antarctic ozone hole is clearly implicated in changing surface climate near 65°S in late summer, in both measurements and models, via downward propagation of height anomalies following the final warming. But one of the largest changes in surface temperature in Antarctica has occurred in the Antarctic Peninsula at 60 to 65°S in winter, and most of the change at 65°S occurred before the ozone hole. Stratospheric change can cause tropospheric change in Antarctic winter by modifying the reflection and refraction of planetary waves, whereby a stronger stratospheric vortex moves the tropospheric jets polewards, which can modify the Southern Annular Mode (SAM) in surface pressure that forces the tropospheric circumpolar winds. We examine stratospheric influence on the SAM in winter by inter‐annual correlation of the SAM with the solar‐cycle and volcanic aerosols, which act to change forcing of the stratospheric vortex in winter. Correlations are a maximum in June (midwinter) and are significant then, but are poor averaged over winter months. Hence the potential of change in the stratosphere to change Antarctic tropospheric climate in winter by dynamical means is low. This negative result is important given the proven high potential for change in summer by dynamical means. Copyright © 2006 Royal Meteorological Society.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Quarterly Journal of the Royal Meteorological Society
    Article . 2006 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Quarterly Journal of...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Quarterly Journal of the Royal Meteorological Society
      Article . 2006 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fritz Schiemer; orcid Hans-Otto Pörtner;
    Hans-Otto Pörtner
    ORCID
    Harvested from ORCID Public Data File

    Hans-Otto Pörtner in OpenAIRE
    orcid Chris M. Wood;
    Chris M. Wood
    ORCID
    Harvested from ORCID Public Data File

    Chris M. Wood in OpenAIRE
    orcid Patricia M. Schulte;
    Patricia M. Schulte
    ORCID
    Harvested from ORCID Public Data File

    Patricia M. Schulte in OpenAIRE

    Current shifts in ecosystem composition and function emphasize the need for an understanding of the links between environmental factors and organism fitness and tolerance. The examples discussed here illustrate how recent progress in the field of comparative physiology may provide a better mechanistic understanding of the ecological concepts of the fundamental and realized niches and thus provide insights into the impacts of anthropogenic disturbance. Here we argue that, as a link between physiological and ecological indicators of organismal performance, the mechanisms shaping aerobic scope and passive tolerance set the dimensions of an animal's niche, here defined as its capacity to survive, grow, behave, and interact with other species. We demonstrate how comparative studies of cod or killifish populations in a latitudinal cline have unraveled mitochondrial mechanisms involved in establishing a species' niche, performance, and energy budget. Riverine fish exemplify how the performance windows of various developmental stages follow the dynamic regimes of both seasonal temperatures and river hydrodynamics, as synergistic challenges. Finally, studies of species in extreme environments, such as the tilapia of Lake Magadi, illustrate how on evolutionary timescales functional and morphological shifts can occur, associated with new specializations. We conclude that research on the processes and time course of adaptations suitable to overcome current niche limits is urgently needed to assess the resilience of species and ecosystems to human impact, including the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiological and Bi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physiological and Biochemical Zoology
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim
    101
    citations101
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Santibanez-Aguascalientes, Norma A.;
    Santibanez-Aguascalientes, Norma A.
    ORCID
    Harvested from ORCID Public Data File

    Santibanez-Aguascalientes, Norma A. in OpenAIRE
    orcid Borja, Angel;
    Borja, Angel
    ORCID
    Harvested from ORCID Public Data File

    Borja, Angel in OpenAIRE
    Ardisson, Pedro-Luis;

    Abstract Currently, in tropical regions such as the southern Gulf of Mexico (sGM), there are no legal guidelines for assessing the quality of the seafloor. We aim to determine whether the seafloor sustainability of the sGM is evenly distributed, based on pressures that human activities produce upon the marine coastal environment, represented by the water quality, sediment quality, and benthic fauna. We analysed physicochemical characteristics and benthic fauna at 183 sites, sampled during five annual surveys (rainy and dry seasons) in the sublittoral and bathyal zones. Socioeconomic indicators were obtained from official national censuses. We calculated a pressure index (PI) based on water quality, sediment quality, and socioeconomic indicators. PI values ranged from 1 to 2.67, with the highest values being observed at coastal sites. Our approach determined that the benthic quality in the study area was related to depth and oil industry influence and that the sGM's seafloor sustainability was unevenly distributed. For sustainability, we determined specific situations for each site or group of sites: (1) sensitive - sites with high benthic quality and low PI; (2) naturally variable - sites for which the poor benthic quality was not related to the PI; (3) degraded - sites with poor benthic quality and high PI; and (4) resilient - sites with good benthic quality and high PI. This differentiation in sustainability situations might be used as a reference for linking socioeconomic activities in the coasts with the ecological status of marine environments from shallow to deep.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mani Murali R.; Ankita M.; Ankita M.; orcid Vethamony P.;
    Vethamony P.
    ORCID
    Harvested from ORCID Public Data File

    Vethamony P. in OpenAIRE

    The occurrence of the PHAILIN, HUDHUD cyclones in the Bay of Bengal region highlights the importance of continuous monitoring of this area from the coastal vulnerability perspective. The increase in the magnitude and frequency of coastal disasters is estimated to cause disastrous effects on the ever-increasing coastal population as well as the natural resources that are available in these regions. In this paper, the coastal vulnerability of a part of the Odisha coast, including the districts of Kendrapara and Jagatsinghpur, has been assessed on a relatively finer scale. These districts are reported to be the most vulnerable areas along the Odisha coast. A set of Physical–geological parameters and socio-economic factors are used to derive the vulnerability using AHP, and vulnerability maps are prepared to demarcate areas with different vulnerability. The Coastal Vulnerability Index (CVI) finally is grouped into the three vulnerability classes for the final coastal vulnerability map. Depending on this classification, approx. 35% of the coastline comes under high vulnerability, 39% under Medium and 26% under low vulnerability class. The coastline adjoining, Teisimouza, Barunei, Paradip, are the highly vulnerable zones whereas the shoreline between Jatardharmohan and Saharabedi comes under intermediate vulnerability zone. The results obtained can be used for prioritization of the most sensitive areas in this coastal belt for better strategic management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Coastal Conservation
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Coastal C...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Coastal Conservation
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John Beardall; orcid Minhan Dai;
    Minhan Dai
    ORCID
    Harvested from ORCID Public Data File

    Minhan Dai in OpenAIRE
    Futian Li; orcid Dong Yan;
    Dong Yan
    ORCID
    Harvested from ORCID Public Data File

    Dong Yan in OpenAIRE
    +11 Authors

    A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on bloom formation by phytoplankton species previously studied in laboratory-based ocean acidification experiments, to determine if the indoor-grown species performed similarly in mesocosms under more realistic environmental conditions. We measured biomass, primary productivity and particulate organic carbon (POC) as well as particulate organic nitrogen (PON). Phaeodactylum tricornutum outcompeted Thalassiosira weissflogii and Emiliania huxleyi, comprising more than 99% of the final biomass. Mainly through a capacity to tolerate nutrient-limited situations, P. tricornutum showed a powerful sustained presence during the plateau phase of growth. Significant differences between high and low CO2 treatments were found in cell concentration, cumulative primary productivity and POC in the plateau phase but not during the exponential phase of growth. Compared to the low pCO2 (LC) treatment, POC increased by 45.8-101.9% in the high pCO2 (HC) treated cells during the bloom period. Furthermore, respiratory carbon losses of gross primary productivity were found to comprise 39-64% for the LC and 31-41% for the HC mesocosms (daytime C fixation) in phase II. Our results suggest that the duration and characteristics of a diatom bloom can be affected by elevated pCO2. Effects of elevated pCO2 observed in the laboratory cannot be reliably extrapolated to large scale mesocosms with multiple influencing factors, especially during intense algal blooms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Environmental Research
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Environmental...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Environmental Research
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Lorna E. Street;
    Lorna E. Street
    ORCID
    Harvested from ORCID Public Data File

    Lorna E. Street in OpenAIRE
    Terry V. Callaghan; Terry V. Callaghan; orcid Gareth K. Phoenix;
    Gareth K. Phoenix
    ORCID
    Harvested from ORCID Public Data File

    Gareth K. Phoenix in OpenAIRE
    +2 Authors

    AbstractExtreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubsEmpetrum hermaphroditum, Vaccinium vitis‐idaea(both evergreen) andVaccinium myrtillus(deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week forE. hermaphroditumandV. myrtillus, and berry production reduced by 11–75% and 52–95% forE. hermaphroditumandV. myrtillus, respectively. Greater shoot mortality occurred inE. hermaphroditum(up to 52%),V. vitis‐idaea(51%), andV. myrtillus(80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    166
    citations166
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph