- home
- Advanced Search
- Energy Research
- IT
- Wind Energy Science
- Netherlands
- Energy Research
- IT
- Wind Energy Science
- Netherlands
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Denmark, Netherlands, ItalyPublisher:Copernicus GmbH Koen Boorsma; Gerard Schepers; Helge Aagard Madsen; Georg Pirrung; Niels Sørensen; Galih Bangga; Manfred Imiela; Christian Grinderslev; Alexander Meyer Forsting; Wen Zhong Shen; Alessandro Croce; Stefano Cacciola; Alois Peter Schaffarczyk; Brandon Lobo; Frederic Blondel; Philippe Gilbert; Ronan Boisard; Leo Höning; Luca Greco; Claudio Testa; Emmanuel Branlard; Jason Jonkman; Ganesh Vijayakumar;handle: 20.500.14243/466785 , 11311/1231176
Abstract. Within the framework of the fourth phase of the International Energy Agency (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out featuring three simulation cases in axial, sheared and yawed inflow conditions. Results were obtained from more than 19 simulation tools originating from 12 institutes, ranging in fidelity from blade element momentum (BEM) to computational fluid dynamics (CFDs) and compared to state-of-the-art field measurements from the 2 MW DanAero turbine. More than 15 different variable types ranging from lifting-line variables to blade surface pressures, loads and velocities have been compared for the different conditions, resulting in over 250 comparison plots. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling. For axial flow conditions, a good agreement was found between the various code types, where a dedicated grid sensitivity study was necessary for the CFD simulations. However, compared to wind tunnel experiments on rotors featuring controlled conditions, it remains a challenge to achieve good agreement of absolute levels between simulations and measurements in the field. For sheared inflow conditions, uncertainties due to rotational and unsteady effects on airfoil data result in the CFD predictions standing out above the codes that need input of sectional airfoil data. However, it was demonstrated that using CFD-synthesized airfoil data is an effective means to bypass this shortcoming. For yawed flow conditions, it was observed that modeling of the skewed wake effect is still problematic for BEM codes where CFD and free vortex wake codes inherently model the underlying physics correctly. The next step is a comparison in turbulent inflow conditions, which is featured in IEA Wind Task 47. Doing this analysis in cooperation under the auspices of the IEA Wind Technology Collaboration Program (TCP) has led to many mutual benefits for the participants. The large size of the consortium brought ample manpower for the analysis where the learning process by combining several complementary experiences and modeling techniques gave valuable insights that could not be found when the analysis is carried out individually.
IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:Copernicus GmbH Simone Mancini; Koen Boorsma; Marco Caboni; Marion Cormier; Thorsten Lutz; Paolo Schito; Alberto Zasso;Abstract. The disruptive potential of floating wind turbines has attracted the interest of both the industry and the scientific community. Lacking a rigid foundation, such machines are subject to large displacements whose impact on aerodynamic performance is not yet fully explored. In this work, the unsteady aerodynamic response to harmonic-surge motion of a scaled version of the DTU 10 MW turbine is investigated in detail. The imposed displacements have been chosen representative of typical platform motion. The results of different numerical models are validated against high-fidelity wind tunnel tests specifically focused on the aerodynamics. Also, a linear analytical model relying on the quasi-steady assumption is presented as a theoretical reference. The unsteady responses are shown to be dominated by the first surge harmonic, and a frequency domain characterization, mostly focused on the thrust oscillation, is conducted involving aerodynamic damping and mass parameters. A very good agreement among the codes, the experiments, and the quasi-steady theory has been found, clarifying some literature doubts. A convenient way to describe the unsteady results in a non-dimensional form is proposed, hopefully serving as a reference for future works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1713-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1713-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, NetherlandsPublisher:Copernicus GmbH Authors: Fontanella A.; Al M.; van Wingerden J. -W.; Belloli M.;handle: 11311/1182085
Abstract. Floating wind turbines rely on feedback-only control strategies to mitigate the effects of wave excitation. Improved power generation and lower fatigue loads can be achieved by including information about the incoming waves into the wind turbine controller. In this paper, a wave-feedforward control strategy is developed and implemented in a 10 MW floating wind turbine. A linear model of the floating wind turbine is established and utilized to show how wave excitation affects the wind turbine rotor speed output, and that collective-pitch is an effective control input to reject the wave disturbance. Based on the inversion of the same model, a feedforward controller is designed, and its performance is examined by means of linear analysis. A gain-scheduling algorithm is proposed to adapt the feedforward action as the wind speed changes. Non-linear time-domain simulations prove that the proposed feedforward control strategy is an effective way of reducing rotor speed oscillations and structural fatigue loads caused by waves.
RE.PUBLIC@POLIMI Res... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2021-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 2 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2021-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:Copernicus GmbH Funded by:EC | CL-WindconEC| CL-WindconB. M. Doekemeijer; S. Kern; S. Maturu; S. Maturu; S. Kanev; B. Salbert; J. Schreiber; F. Campagnolo; C. L. Bottasso; S. Schuler; F. Wilts; T. Neumann; G. Potenza; F. Calabretta; F. Fioretti; J.-W. van Wingerden;Abstract. The concept of wake steering on wind farms for power maximization has gained significant popularity over the last decade. Recent field trials described in the literature not only demonstrate the real potential of wake steering on commercial wind farms but also show that wake steering does not yet consistently lead to an increase in energy production for all inflow conditions. Moreover, a recent survey among experts shows that validation of the concept currently remains the largest barrier to adoption. In response, this article presents the results of a field experiment investigating wake steering in three-turbine arrays at an onshore wind farm in Italy. This experiment was performed as part of the European CL-Windcon project. While important, this experiment excludes an analysis of the structural loads and focuses solely on the effects of wake steering on power production. The measurements show increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions too. In addition to the gains achieved through wake steering at downstream turbines, more interesting to note is that a significant share in gains is from the upstream turbines, showing an increased power production of the yawed turbine itself compared to baseline operation for some wind directions. Furthermore, the surrogate model, while capturing the general trends of wake interaction, lacks the details necessary to accurately represent the measurements. This article supports the notion that further research is necessary, notably on the topics of wind farm modeling and experiment design, before wake steering will lead to consistent energy gains on commercial wind farms.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-159-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 7 Powered bymore_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-159-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Copernicus GmbH Funded by:EC | STEP4WIND, NWO | Physics-informed data-dri..., NWO | Combining efforts in enzy...EC| STEP4WIND ,NWO| Physics-informed data-driven modelling and control of floating wind turbines ,NWO| Combining efforts in enzyme and process engineering to improve access to multifunctional chiral intermediates (ProACIm)Authors: F. Taruffi; F. Novais; F. Novais; A. Viré;Abstract. The rotor of a floating wind turbine is subject to complex aerodynamics due to changes in relative wind speeds at the blades and potential local interactions between blade sections and the rotor near wake. These complex interactions are not yet fully understood. Lab-scale experiments are highly relevant for capturing these phenomena and provide means for the validation of numerical design tools. This paper presents a new wind tunnel experimental setup able to study the aerodynamic response of a wind turbine rotor when subjected to prescribed motions. The present study uses a 1:148 scale model of the DTU 10 MW reference wind turbine mounted on top of a 6 degrees of freedom parallel kinematic robotic platform. Firstly, the thrust variation of the turbine is investigated when single degree of freedom harmonic motions are imposed by the platform, with surge, pitch and yaw being considered in this study. For reduced frequencies greater than 1.2, it is found that the thrust variation is amplified by up to 150 % compared to the quasi-steady value when the turbine is subject to pitch and surge motions, regardless of the amplitude of motion. A similar behaviour is also noticed under yaw motions. Secondly, realistic 6 degrees of freedom motions are imposed by the platform. The motions are derived from FAST simulations performed on the full-scale turbine coupled with the TripleSpar floater, and the tests aim at exploring the thrust force dynamics for different sea states and wind conditions, obtaining reasonable agreement with the simulations. Finally, the work shows the capabilities of an off-the-shelf hexapod to conduct hybrid testing of floating offshore wind turbines in wind tunnels, as well as its limitations in performing such tests.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-343-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-343-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREA. Bianchini; A. Bianchini; G. Bangga; G. Bangga; I. Baring-Gould; A. Croce; A. Croce; J. I. Cruz; R. Damiani; G. Erfort; G. Erfort; C. Simao Ferreira; C. Simao Ferreira; D. Infield; C. N. Nayeri; C. N. Nayeri; G. Pechlivanoglou; M. Runacres; M. Runacres; G. Schepers; G. Schepers; B. Summerville; D. Wood; A. Orrell;handle: 11311/1222129 , 2158/1286629
Abstract. While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement of their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programmes are developing worldwide. With this background, the scope of the present study is twofold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e.: (1) improve energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predict long-term turbine performance with limited resource measurements and prove reliability; (3) improve the economic viability of small wind energy; (4) facilitate the contribution of SWTs to the energy demand and electrical system integration; (5) foster engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested within which ten key enabling actions are finally proposed.
RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 7 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 28 Jun 2024 Spain, Spain, France, Italy, Denmark, Italy, NetherlandsPublisher:Copernicus GmbH Funded by:EC | STEP4WINDEC| STEP4WINDS. Cioni; F. Papi; L. Pagamonci; A. Bianchini; N. Ramos-García; G. Pirrung; R. Corniglion; A. Lovera; J. Galván; R. Boisard; A. Fontanella; P. Schito; A. Zasso; M. Belloli; A. Sanvito; G. Persico; L. Zhang; Y. Li; Y. Zhou; S. Mancini; K. Boorsma; R. Amaral; R. Amaral; A. Viré; C. W. Schulz; S. Netzband; R. Soto-Valle; D. Marten; R. Martín-San-Román; P. Trubat; C. Molins; R. Bergua; E. Branlard; J. Jonkman; A. Robertson;handle: 2117/404745 , 11311/1255521 , 2158/1347927
Abstract. This study reports the results of the second round of analyses of the Offshore Code Comparison, Collaboration, Continued, with Correlation and unCertainty (OC6) project Phase III. While the first round investigated rotor aerodynamic loading, here, focus is given to the wake behavior of a floating wind turbine under large motion. Wind tunnel experimental data from the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project are compared with the results of simulations provided by participants with methods and codes of different levels of fidelity. The effect of platform motion on both the near and the far wake is investigated. More specifically, the behavior of tip vortices in the near wake is evaluated through multiple metrics, such as streamwise position, core radius, convection velocity, and circulation. Additionally, the onset of velocity oscillations in the far wake is analyzed because this can have a negative effect on stability and loading of downstream rotors. Results in the near wake for unsteady cases confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the rotor reduced frequency increases over 0.5. Additionally, differences across the simulations become significant, suggesting that further efforts are required to tune the currently available methodologies in order to correctly evaluate the aerodynamic response of a floating wind turbine in unsteady conditions. Regarding the far wake, it is seen that, in some conditions, numerical methods overpredict the impact of platform motion on the velocity fluctuations. Moreover, results suggest that the effect of platform motion on the far wake, differently from original expectations about a faster wake recovery in a floating wind turbine, seems to be limited or even oriented to the generation of a wake less prone to dissipation.
RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2023License: CC BYData sources: Flore (Florence Research Repository)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyUPCommons. Portal del coneixement obert de la UPCArticle . 2023License: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1659-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 59visibility views 59 download downloads 23 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2023License: CC BYData sources: Flore (Florence Research Repository)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyUPCommons. Portal del coneixement obert de la UPCArticle . 2023License: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1659-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2016 Denmark, Denmark, Italy, Denmark, Denmark, Netherlands, DenmarkPublisher:Copernicus GmbH G. A. M. van Kuik; J. Peinke; R. Nijssen; D. Lekou; J. Mann; J. N. Sørensen; C. Ferreira; J. W. van Wingerden; D. Schlipf; P. Gebraad; H. Polinder; A. Abrahamsen; G. J. W. van Bussel; J. D. Sørensen; P. Tavner; C. L. Bottasso; C. L. Bottasso; M. Muskulus; D. Matha; H. J. Lindeboom; S. Degraer; O. Kramer; S. Lehnhoff; M. Sonnenschein; P. E. Sørensen; R. W. Künneke; P. E. Morthorst; K. Skytte;doi: 10.5194/wes-1-1-2016
handle: 11250/2644354 , 11311/1007381
Abstract. The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2016Full-Text: http://www.wind-energ-sci.net/1/1/2016/Data sources: Norwegian Open Research ArchivesDANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 195 citations 195 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 28visibility views 28 download downloads 12 Powered bymore_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2016Full-Text: http://www.wind-energ-sci.net/1/1/2016/Data sources: Norwegian Open Research ArchivesDANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, Netherlands, DenmarkPublisher:Copernicus GmbH Publicly fundedP. Veers; K. Dykes; S. Basu; A. Bianchini; A. Clifton; A. Clifton; P. Green; H. Holttinen; H. Holttinen; L. Kitzing; B. Kosovic; J. K. Lundquist; J. K. Lundquist; J. Meyers; M. O'Malley; W. J. Shaw; B. Straw;handle: 2158/1306261
Abstract. Wind energy is anticipated to play a central role in enabling a rapid transition from fossil fuels to a system based largely on renewable power. For wind power to fulfill its expected role as the backbone—providing nearly half of the electrical energy—of a renewable-based, carbon-neutral energy system, critical challenges around design, development, and deployment of land and offshore technologies must be addressed. During the past three years, the wind research community has invested significant effort toward understanding the nature and implications of these challenges and identifying associated gaps. The outcomes of these efforts are summarized in a series of ten articles, some under review by Wind Energy Science (WES) and others planned for submission during the coming months. This letter explains the genesis, significance, and impacts of these efforts.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 14 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Netherlands, ItalyPublisher:Copernicus GmbH Authors: Vinit Dighe; Dhruv Suri; Francesco Avallone; Gerard van Bussel;handle: 11583/2976905
Abstract. Ducted wind turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform flows are caused by the presence of buildings or other surface discontinuities. For this reason, the aerodynamic performance of DWTs in yawed-flow conditions must be characterized depending upon their geometric parameters and operating conditions. A numerical study to investigate the characteristics of flow around two DWT configurations using a simplified duct-actuator disc (AD) model is carried out. The analysis shows that the aerodynamic performance of a DWT in yawed flow is dependent on the mutual interactions between the duct and the AD, an interaction that changes with duct geometry. For the two configurations studied, the highly cambered variant of duct configuration returns a gain in performance by approximately 11 % up to a specific yaw angle (α= 17.5∘) when compared to the non-yawed case; thereafter any further increase in yaw angle results in a performance drop. In contrast, performance of less cambered variant duct configuration drops for α>0∘. The gain in the aerodynamic performance is attributed to the additional camber of the duct that acts as a flow-conditioning device and delays duct wall flow separation inside of the duct for a broad range of yaw angles.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinohttps://doi.org/10.5194/wes-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-1263-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 2 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinohttps://doi.org/10.5194/wes-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-1263-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Denmark, Netherlands, ItalyPublisher:Copernicus GmbH Koen Boorsma; Gerard Schepers; Helge Aagard Madsen; Georg Pirrung; Niels Sørensen; Galih Bangga; Manfred Imiela; Christian Grinderslev; Alexander Meyer Forsting; Wen Zhong Shen; Alessandro Croce; Stefano Cacciola; Alois Peter Schaffarczyk; Brandon Lobo; Frederic Blondel; Philippe Gilbert; Ronan Boisard; Leo Höning; Luca Greco; Claudio Testa; Emmanuel Branlard; Jason Jonkman; Ganesh Vijayakumar;handle: 20.500.14243/466785 , 11311/1231176
Abstract. Within the framework of the fourth phase of the International Energy Agency (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out featuring three simulation cases in axial, sheared and yawed inflow conditions. Results were obtained from more than 19 simulation tools originating from 12 institutes, ranging in fidelity from blade element momentum (BEM) to computational fluid dynamics (CFDs) and compared to state-of-the-art field measurements from the 2 MW DanAero turbine. More than 15 different variable types ranging from lifting-line variables to blade surface pressures, loads and velocities have been compared for the different conditions, resulting in over 250 comparison plots. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling. For axial flow conditions, a good agreement was found between the various code types, where a dedicated grid sensitivity study was necessary for the CFD simulations. However, compared to wind tunnel experiments on rotors featuring controlled conditions, it remains a challenge to achieve good agreement of absolute levels between simulations and measurements in the field. For sheared inflow conditions, uncertainties due to rotational and unsteady effects on airfoil data result in the CFD predictions standing out above the codes that need input of sectional airfoil data. However, it was demonstrated that using CFD-synthesized airfoil data is an effective means to bypass this shortcoming. For yawed flow conditions, it was observed that modeling of the skewed wake effect is still problematic for BEM codes where CFD and free vortex wake codes inherently model the underlying physics correctly. The next step is a comparison in turbulent inflow conditions, which is featured in IEA Wind Task 47. Doing this analysis in cooperation under the auspices of the IEA Wind Technology Collaboration Program (TCP) has led to many mutual benefits for the participants. The large size of the consortium brought ample manpower for the analysis where the learning process by combining several complementary experiences and modeling techniques gave valuable insights that could not be found when the analysis is carried out individually.
IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:Copernicus GmbH Simone Mancini; Koen Boorsma; Marco Caboni; Marion Cormier; Thorsten Lutz; Paolo Schito; Alberto Zasso;Abstract. The disruptive potential of floating wind turbines has attracted the interest of both the industry and the scientific community. Lacking a rigid foundation, such machines are subject to large displacements whose impact on aerodynamic performance is not yet fully explored. In this work, the unsteady aerodynamic response to harmonic-surge motion of a scaled version of the DTU 10 MW turbine is investigated in detail. The imposed displacements have been chosen representative of typical platform motion. The results of different numerical models are validated against high-fidelity wind tunnel tests specifically focused on the aerodynamics. Also, a linear analytical model relying on the quasi-steady assumption is presented as a theoretical reference. The unsteady responses are shown to be dominated by the first surge harmonic, and a frequency domain characterization, mostly focused on the thrust oscillation, is conducted involving aerodynamic damping and mass parameters. A very good agreement among the codes, the experiments, and the quasi-steady theory has been found, clarifying some literature doubts. A convenient way to describe the unsteady results in a non-dimensional form is proposed, hopefully serving as a reference for future works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1713-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1713-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, NetherlandsPublisher:Copernicus GmbH Authors: Fontanella A.; Al M.; van Wingerden J. -W.; Belloli M.;handle: 11311/1182085
Abstract. Floating wind turbines rely on feedback-only control strategies to mitigate the effects of wave excitation. Improved power generation and lower fatigue loads can be achieved by including information about the incoming waves into the wind turbine controller. In this paper, a wave-feedforward control strategy is developed and implemented in a 10 MW floating wind turbine. A linear model of the floating wind turbine is established and utilized to show how wave excitation affects the wind turbine rotor speed output, and that collective-pitch is an effective control input to reject the wave disturbance. Based on the inversion of the same model, a feedforward controller is designed, and its performance is examined by means of linear analysis. A gain-scheduling algorithm is proposed to adapt the feedforward action as the wind speed changes. Non-linear time-domain simulations prove that the proposed feedforward control strategy is an effective way of reducing rotor speed oscillations and structural fatigue loads caused by waves.
RE.PUBLIC@POLIMI Res... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2021-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 2 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2021-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:Copernicus GmbH Funded by:EC | CL-WindconEC| CL-WindconB. M. Doekemeijer; S. Kern; S. Maturu; S. Maturu; S. Kanev; B. Salbert; J. Schreiber; F. Campagnolo; C. L. Bottasso; S. Schuler; F. Wilts; T. Neumann; G. Potenza; F. Calabretta; F. Fioretti; J.-W. van Wingerden;Abstract. The concept of wake steering on wind farms for power maximization has gained significant popularity over the last decade. Recent field trials described in the literature not only demonstrate the real potential of wake steering on commercial wind farms but also show that wake steering does not yet consistently lead to an increase in energy production for all inflow conditions. Moreover, a recent survey among experts shows that validation of the concept currently remains the largest barrier to adoption. In response, this article presents the results of a field experiment investigating wake steering in three-turbine arrays at an onshore wind farm in Italy. This experiment was performed as part of the European CL-Windcon project. While important, this experiment excludes an analysis of the structural loads and focuses solely on the effects of wake steering on power production. The measurements show increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions too. In addition to the gains achieved through wake steering at downstream turbines, more interesting to note is that a significant share in gains is from the upstream turbines, showing an increased power production of the yawed turbine itself compared to baseline operation for some wind directions. Furthermore, the surrogate model, while capturing the general trends of wake interaction, lacks the details necessary to accurately represent the measurements. This article supports the notion that further research is necessary, notably on the topics of wind farm modeling and experiment design, before wake steering will lead to consistent energy gains on commercial wind farms.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-159-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 7 Powered bymore_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-159-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Copernicus GmbH Funded by:EC | STEP4WIND, NWO | Physics-informed data-dri..., NWO | Combining efforts in enzy...EC| STEP4WIND ,NWO| Physics-informed data-driven modelling and control of floating wind turbines ,NWO| Combining efforts in enzyme and process engineering to improve access to multifunctional chiral intermediates (ProACIm)Authors: F. Taruffi; F. Novais; F. Novais; A. Viré;Abstract. The rotor of a floating wind turbine is subject to complex aerodynamics due to changes in relative wind speeds at the blades and potential local interactions between blade sections and the rotor near wake. These complex interactions are not yet fully understood. Lab-scale experiments are highly relevant for capturing these phenomena and provide means for the validation of numerical design tools. This paper presents a new wind tunnel experimental setup able to study the aerodynamic response of a wind turbine rotor when subjected to prescribed motions. The present study uses a 1:148 scale model of the DTU 10 MW reference wind turbine mounted on top of a 6 degrees of freedom parallel kinematic robotic platform. Firstly, the thrust variation of the turbine is investigated when single degree of freedom harmonic motions are imposed by the platform, with surge, pitch and yaw being considered in this study. For reduced frequencies greater than 1.2, it is found that the thrust variation is amplified by up to 150 % compared to the quasi-steady value when the turbine is subject to pitch and surge motions, regardless of the amplitude of motion. A similar behaviour is also noticed under yaw motions. Secondly, realistic 6 degrees of freedom motions are imposed by the platform. The motions are derived from FAST simulations performed on the full-scale turbine coupled with the TripleSpar floater, and the tests aim at exploring the thrust force dynamics for different sea states and wind conditions, obtaining reasonable agreement with the simulations. Finally, the work shows the capabilities of an off-the-shelf hexapod to conduct hybrid testing of floating offshore wind turbines in wind tunnels, as well as its limitations in performing such tests.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-343-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-343-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREA. Bianchini; A. Bianchini; G. Bangga; G. Bangga; I. Baring-Gould; A. Croce; A. Croce; J. I. Cruz; R. Damiani; G. Erfort; G. Erfort; C. Simao Ferreira; C. Simao Ferreira; D. Infield; C. N. Nayeri; C. N. Nayeri; G. Pechlivanoglou; M. Runacres; M. Runacres; G. Schepers; G. Schepers; B. Summerville; D. Wood; A. Orrell;handle: 11311/1222129 , 2158/1286629
Abstract. While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement of their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programmes are developing worldwide. With this background, the scope of the present study is twofold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e.: (1) improve energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predict long-term turbine performance with limited resource measurements and prove reliability; (3) improve the economic viability of small wind energy; (4) facilitate the contribution of SWTs to the energy demand and electrical system integration; (5) foster engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested within which ten key enabling actions are finally proposed.
RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 7 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 28 Jun 2024 Spain, Spain, France, Italy, Denmark, Italy, NetherlandsPublisher:Copernicus GmbH Funded by:EC | STEP4WINDEC| STEP4WINDS. Cioni; F. Papi; L. Pagamonci; A. Bianchini; N. Ramos-García; G. Pirrung; R. Corniglion; A. Lovera; J. Galván; R. Boisard; A. Fontanella; P. Schito; A. Zasso; M. Belloli; A. Sanvito; G. Persico; L. Zhang; Y. Li; Y. Zhou; S. Mancini; K. Boorsma; R. Amaral; R. Amaral; A. Viré; C. W. Schulz; S. Netzband; R. Soto-Valle; D. Marten; R. Martín-San-Román; P. Trubat; C. Molins; R. Bergua; E. Branlard; J. Jonkman; A. Robertson;handle: 2117/404745 , 11311/1255521 , 2158/1347927
Abstract. This study reports the results of the second round of analyses of the Offshore Code Comparison, Collaboration, Continued, with Correlation and unCertainty (OC6) project Phase III. While the first round investigated rotor aerodynamic loading, here, focus is given to the wake behavior of a floating wind turbine under large motion. Wind tunnel experimental data from the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project are compared with the results of simulations provided by participants with methods and codes of different levels of fidelity. The effect of platform motion on both the near and the far wake is investigated. More specifically, the behavior of tip vortices in the near wake is evaluated through multiple metrics, such as streamwise position, core radius, convection velocity, and circulation. Additionally, the onset of velocity oscillations in the far wake is analyzed because this can have a negative effect on stability and loading of downstream rotors. Results in the near wake for unsteady cases confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the rotor reduced frequency increases over 0.5. Additionally, differences across the simulations become significant, suggesting that further efforts are required to tune the currently available methodologies in order to correctly evaluate the aerodynamic response of a floating wind turbine in unsteady conditions. Regarding the far wake, it is seen that, in some conditions, numerical methods overpredict the impact of platform motion on the velocity fluctuations. Moreover, results suggest that the effect of platform motion on the far wake, differently from original expectations about a faster wake recovery in a floating wind turbine, seems to be limited or even oriented to the generation of a wake less prone to dissipation.
RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2023License: CC BYData sources: Flore (Florence Research Repository)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyUPCommons. Portal del coneixement obert de la UPCArticle . 2023License: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1659-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 59visibility views 59 download downloads 23 Powered bymore_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Flore (Florence Research Repository)Article . 2023License: CC BYData sources: Flore (Florence Research Repository)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyUPCommons. Portal del coneixement obert de la UPCArticle . 2023License: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1659-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2016 Denmark, Denmark, Italy, Denmark, Denmark, Netherlands, DenmarkPublisher:Copernicus GmbH G. A. M. van Kuik; J. Peinke; R. Nijssen; D. Lekou; J. Mann; J. N. Sørensen; C. Ferreira; J. W. van Wingerden; D. Schlipf; P. Gebraad; H. Polinder; A. Abrahamsen; G. J. W. van Bussel; J. D. Sørensen; P. Tavner; C. L. Bottasso; C. L. Bottasso; M. Muskulus; D. Matha; H. J. Lindeboom; S. Degraer; O. Kramer; S. Lehnhoff; M. Sonnenschein; P. E. Sørensen; R. W. Künneke; P. E. Morthorst; K. Skytte;doi: 10.5194/wes-1-1-2016
handle: 11250/2644354 , 11311/1007381
Abstract. The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2016Full-Text: http://www.wind-energ-sci.net/1/1/2016/Data sources: Norwegian Open Research ArchivesDANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 195 citations 195 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 28visibility views 28 download downloads 12 Powered bymore_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2016Full-Text: http://www.wind-energ-sci.net/1/1/2016/Data sources: Norwegian Open Research ArchivesDANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, Netherlands, DenmarkPublisher:Copernicus GmbH Publicly fundedP. Veers; K. Dykes; S. Basu; A. Bianchini; A. Clifton; A. Clifton; P. Green; H. Holttinen; H. Holttinen; L. Kitzing; B. Kosovic; J. K. Lundquist; J. K. Lundquist; J. Meyers; M. O'Malley; W. J. Shaw; B. Straw;handle: 2158/1306261
Abstract. Wind energy is anticipated to play a central role in enabling a rapid transition from fossil fuels to a system based largely on renewable power. For wind power to fulfill its expected role as the backbone—providing nearly half of the electrical energy—of a renewable-based, carbon-neutral energy system, critical challenges around design, development, and deployment of land and offshore technologies must be addressed. During the past three years, the wind research community has invested significant effort toward understanding the nature and implications of these challenges and identifying associated gaps. The outcomes of these efforts are summarized in a series of ten articles, some under review by Wind Energy Science (WES) and others planned for submission during the coming months. This letter explains the genesis, significance, and impacts of these efforts.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 14 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BYData sources: Flore (Florence Research Repository)https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-66&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Netherlands, ItalyPublisher:Copernicus GmbH Authors: Vinit Dighe; Dhruv Suri; Francesco Avallone; Gerard van Bussel;handle: 11583/2976905
Abstract. Ducted wind turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform flows are caused by the presence of buildings or other surface discontinuities. For this reason, the aerodynamic performance of DWTs in yawed-flow conditions must be characterized depending upon their geometric parameters and operating conditions. A numerical study to investigate the characteristics of flow around two DWT configurations using a simplified duct-actuator disc (AD) model is carried out. The analysis shows that the aerodynamic performance of a DWT in yawed flow is dependent on the mutual interactions between the duct and the AD, an interaction that changes with duct geometry. For the two configurations studied, the highly cambered variant of duct configuration returns a gain in performance by approximately 11 % up to a specific yaw angle (α= 17.5∘) when compared to the non-yawed case; thereafter any further increase in yaw angle results in a performance drop. In contrast, performance of less cambered variant duct configuration drops for α>0∘. The gain in the aerodynamic performance is attributed to the additional camber of the duct that acts as a flow-conditioning device and delays duct wall flow separation inside of the duct for a broad range of yaw angles.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinohttps://doi.org/10.5194/wes-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-1263-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 2 Powered bymore_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinohttps://doi.org/10.5194/wes-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-1263-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu