- home
- Advanced Search
- Energy Research
- 2021-2025
- CA
- Neuroinformatics
- Energy Research
- 2021-2025
- CA
- Neuroinformatics
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Diptendu Chatterjee; Dipashree Chatterjee; Samantha Mahabir; Robert Gerlai;pmid: 33864849
The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.
Progress in Neuro-Ps... arrow_drop_down Progress in Neuro-Psychopharmacology and Biological PsychiatryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefProgress in Neuro-Psychopharmacology and Biological PsychiatryJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnpbp.2021.110327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Progress in Neuro-Ps... arrow_drop_down Progress in Neuro-Psychopharmacology and Biological PsychiatryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefProgress in Neuro-Psychopharmacology and Biological PsychiatryJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnpbp.2021.110327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Oxford University Press (OUP) Funded by:NIH | NCANDA Research Project S..., NIH | The TEEN Study: The Impac..., NIH | National Consortium on Al... +4 projectsNIH| NCANDA Research Project Site: Duke ,NIH| The TEEN Study: The Impact of Adolescent Drinking on Connectivity in the Brain ,NIH| National Consortium on Alcohol and Neurodevelopment in Adolescence: Admin ,NIH| National Consortium on Alcohol and Neurodevelopment in Adolescence: San Diego ,NIH| National Consortium on Alcohol and NeuroDevelopment in Adolescence:Pittsburgh ,NIH| Sex Differences in Autonomic Nervous System Function and Depression Across Adolescence ,NIH| N-CANDA: Data Analysis ComponentDavid B. Goldston; M D De Bellis; Maria Alejandra Infante; Duncan B. Clark; Susan F. Tapert; Qingyu Zhao; Kilian M. Pohl; Kilian M. Pohl; Y Zhang; Fiona C. Baker; Edith V. Sullivan; Bonnie J. Nagel; Sandra A. Brown; Kate B. Nooner; Thompson Wk; Adolf Pfefferbaum; Adolf Pfefferbaum; Ian M. Colrain; Sonja Eberson; Ty Brumback;Abstract The age- and time-dependent effects of binge drinking on adolescent brain development have not been well characterized even though binge drinking is a health crisis among adolescents. The impact of binge drinking on gray matter volume (GMV) development was examined using 5 waves of longitudinal data from the National Consortium on Alcohol and NeuroDevelopment in Adolescence study. Binge drinkers (n = 166) were compared with non-binge drinkers (n = 82 after matching on potential confounders). Number of binge drinking episodes in the past year was linked to decreased GMVs in bilateral Desikan–Killiany cortical parcellations (26 of 34 with P < 0.05/34) with the strongest effects observed in frontal regions. Interactions of binge drinking episodes and baseline age demonstrated stronger effects in younger participants. Statistical models sensitive to number of binge episodes and their temporal proximity to brain volumes provided the best fits. Consistent with prior research, results of this study highlight the negative effects of binge drinking on the developing brain. Our results present novel findings that cortical GMV decreases were greater in closer proximity to binge drinking episodes in a dose–response manner. This relation suggests a causal effect and raises the possibility that normal growth trajectories may be reinstated with alcohol abstinence.
Cerebral Cortex arrow_drop_down Cerebral CortexArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefhttps://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhab368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cerebral Cortex arrow_drop_down Cerebral CortexArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefhttps://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhab368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Orsolya Kiss; Aimée Goldstone; Massimiliano de Zambotti; Dilara Yüksel; Brant P Hasler; Peter L Franzen; Sandra A Brown; Michael D De Bellis; Bonnie J Nagel; Kate B Nooner; Susan F Tapert; Ian M Colrain; Duncan B Clark; Fiona C Baker;Abstract Study Objectives Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use). Methods Adolescents (n = 94, 43% female, age: 12–21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline. Results Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males. Conclusions These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep–wake regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/sleep/zsad113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/sleep/zsad113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Ravinder Naik Dharavath; Celeste Pina-Leblanc; Celeste Pina-Leblanc; Victor M. Tang; +47 AuthorsRavinder Naik Dharavath; Celeste Pina-Leblanc; Celeste Pina-Leblanc; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Yuliya S. Nikolova; Yuliya S. Nikolova; Peter Pangarov; Anthony C. Ruocco; Anthony C. Ruocco; Anthony C. Ruocco; Anthony C. Ruocco; Kevin Shield; Daphne Voineskos; Daphne Voineskos; Daphne Voineskos; Daniel M. Blumberger; Daniel M. Blumberger; Daniel M. Blumberger; Isabelle Boileau; Isabelle Boileau; Isabelle Boileau; Isabelle Boileau; Nikki Bozinoff; Nikki Bozinoff; Philip Gerretsen; Philip Gerretsen; Philip Gerretsen; Philip Gerretsen; Erica Vieira; Erica Vieira; Osnat C. Melamed; Osnat C. Melamed; Etienne Sibille; Etienne Sibille; Etienne Sibille; Lena C. Quilty; Lena C. Quilty; Thomas D. Prevot; Thomas D. Prevot;Alcohol is one of the most widely used substances. Alcohol use accounts for 5.1% of the global disease burden, contributes substantially to societal and economic costs, and leads to approximately 3 million global deaths yearly. Alcohol use disorder (AUD) includes various drinking behavior patterns that lead to short-term or long-lasting effects on health. Ethanol, the main psychoactive molecule acting in alcoholic beverages, directly impacts the GABAergic system, contributing to GABAergic dysregulations that vary depending on the intensity and duration of alcohol consumption. A small number of interventions have been developed that target the GABAergic system, but there are promising future therapeutic avenues to explore. This review provides an overview of the impact of alcohol on the GABAergic system, the current interventions available for AUD that target the GABAergic system, and the novel interventions being explored that in the future could be included among first-line therapies for the treatment of AUD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fncir.2023.1218737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fncir.2023.1218737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Cold Spring Harbor Laboratory Funded by:UKRI | Neurobiological underpinn..., NIH | ENIGMA Center for Worldwi..., EC | STRATIFY +12 projectsUKRI| Neurobiological underpinning of eating disorders: integrative biopsychosocial longitudinal analyses in adolescents ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,EC| STRATIFY ,UKRI| Consortium on Vulnerability to Externalizing Disorders and Addictions [c-VEDA] ,NIH| ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD ,ANR| ADODEP ,NIH| ENIGMA World Aging Center ,SFI| The Neurobiology of Voluntary Nicotine Abstinence: Genetics, Environment and Neurocognitive Endophenotypes ,DFG| Volition and Cognitive Control: Mechanisms, Modulators and Dysfunctions ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,NIH| Axon, Testosterone and Mental Health during Adolescence ,NIH| A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers ,UKRI| Establishing causal relationships between biopsychosocial predictors and correlates of eating disorders and their mediation by neural pathways ,NIH| COINSTAC: decentralized, scalable analysis of loosely coupled data ,NSF| CREST Center for Dynamic Multiscale and Multimodal Brain Mapping Over The Lifespan [D-MAP]Harshvardhan Gazula; Kelly Rootes-Murdy; Bharath Holla; Sunitha Basodi; Zuo Zhang; Eric Verner; Ross Kelly; Pratima Murthy; Amit Chakrabarti; Debasish Basu; Subodh Bhagyalakshmi Nanjayya; Rajkumar Lenin Singh; Roshan Lourembam Singh; Kartik Kalyanram; Kamakshi Kartik; Kumaran Kalyanaraman; Krishnaveni Ghattu; Rebecca Kuriyan; Sunita Simon Kurpad; Gareth J Barker; Rose Dawn Bharath; Sylvane Desrivieres; Meera Purushottam; Dimitri Papadopoulos Orfanos; Eesha Sharma; Matthew Hickman; Mireille Toledano; Nilakshi Vaidya; Tobias Banaschewski; Arun L.W. Bokde; Herta Flor; Antoine Grigis; Hugh Garavan; Penny Gowland; Andreas Heinz; Rüdiger Brühl; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Eric Artiges; Frauke Nees; Tomáš Paus; Luise Poustka; Juliane H. Fröhner; Lauren Robinson; Michael N. Smolka; Henrik Walter; Jeanne Winterer; Robert Whelan; Jessica A. Turner; Anand D. Sarwate; Sergey M. Plis; Vivek Benegal; Gunter Schumann; Vince D. Calhoun;pmid: 36434478
AbstractWith the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:NSERCNSERCAuthors: Ashifa Hudani; James A. White; Steven C. Greenway; Julio Garcia;doi: 10.3390/app122110946
Approximately 10% of congenital heart diseases (CHDs) include Tetralogy of Fallot (TOF). Fortunately, due to advanced surgical techniques, most patients survive until adulthood. However, these patients require frequent monitoring for postoperative complications leading to heart hemodynamic alterations. Turbulent kinetic energy (TKE), as derived from 4D-flow magnetic resonance imaging (4D-flow MRI), has been used to characterize abnormal heart hemodynamics in CHD. Hence, this study aimed to assess the difference in TKE between patients with repaired TOF (rTOF) and healthy volunteers. A total of 35 subjects, 17 rTOF patients and 18 controls, underwent standard-of-care cardiac MRI and research 4D-flow MRI using a clinical 3T scanner. Heart chambers and great vessels were segmented using 3D angiograms derived from 4D-flow MRI. The TKE was quantified within segmented volumes. TKE was compared to standard cardiac MRI metrics. Controls demonstrated higher TKE in the left atria and left ventricle. However, patients demonstrated higher TKE in the right atria, right ventricle (p < 0.05), and pulmonary artery. Lastly, no correlation was observed between TKE and standard clinical measurements. TKE can be a key indicator of the abnormal hemodynamics present in patients with rTOF and can assist future interventions and help monitor long-term outcomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122110946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122110946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Laura M. Lesnewich; Anthony P. Pawlak; Suril Gohel; Marsha E. Bates;doi: 10.1111/add.15828
pmid: 35129227
AbstractBackground and AimsBinge drinking contributes to the immense public health burden associated with alcohol use, especially among younger drinkers. Little is known about the underlying neurobiology of changes in this behavior over time. This preliminary study aimed to identify neurobiological markers of binge drinking behavior change during emerging adulthood.DesignObservational prospective investigation of neurobiological predictors of binge drinking behavior.SettingCommunities surrounding a large, public university in the northeastern United States.ParticipantsA total of 42 emerging adults (48% female), approximately half meeting criteria for an alcohol use disorder.MeasurementsPast month binge drinking, the dependent variable, was assessed at two time‐points (T1, T2) via self‐report. Ten indices of resting‐state functional connectivity within the central executive network (CEN), a brain network involved in executive function, were collected at T1 and specified as independent variables in cross‐sectional and prospective Poisson models. All models controlled for age, sex, and alcohol use disorder status.FindingsThe cross‐sectional model yielded five significant associations between CEN connectivity and binge drinking incidence. Connections anchored primarily in the anterior CEN exhibited negative associations with binge drinking incidence (P = 0.001, 0.004, 0.011), and connections stemming from the right posterior parietal cortex exhibited positive associations with binge drinking incidence (P = 0.041, 0.045). In prospective models, stronger frontoparietal connectivity between the right dorsolateral prefrontal cortex and left posterior parietal cortex predicted greater increases in binge drinking incidence over time (P = 0.003).ConclusionsThere is an association between central executive network connectivity and heavy drinking, as well as evidence that functional pathways within the central executive network may contribute to changes in problematic drinking behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley R. Colin Carter; Ernesta M. Meintjes; Neil C. Dodge; Lilla Zöllei; Christopher M. R. Warton; Nadine M. Lindinger; Fleur L. Warton; Joseph L. Jacobson; Joseph L. Jacobson; Pia Wintermark; Andre van der Kouwe; Andre van der Kouwe; Sandra W. Jacobson; Sandra W. Jacobson; Christopher D. Molteno;AbstractBackgroundPrenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double‐blind, placebo‐controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE‐related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory.MethodsFifty‐two infants born to heavy‐drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi‐echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline‐related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII.ResultsUsable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (β ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory.ConclusionsHigh‐dose choline supplementation during pregnancy mitigated PAE‐related regional volume reductions, with larger volumes associated with improved 12‐month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE‐related brain structural deficits in humans.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:NSERC, WTNSERC ,WTAuthors: Jarrad Perron; Ji Hyun Ko;doi: 10.3390/app122211463
The dementia spectrum is a broad range of disorders with complex diagnosis, pathophysiology, and a limited set of treatment options, where the most common variety is Alzheimer’s disease (AD). Positron emission tomography (PET) has become a valuable tool for the detection of AD; however, following the results of post-mortem studies, AD diagnosis has modest sensitivity and specificity at best. It remains common practice that readings of these images are performed by a physician’s subjective impressions of the spatial pattern of tracer uptake, and so quantitative methods based on established biomarkers have had little penetration into clinical practice. The present study is a review of the data-driven methods available for molecular neuroimaging studies (fluorodeoxyglucose-/amyloid-/tau-PET), with emphasis on the use of machine/deep learning as quantitative tools complementing the specialist in detecting AD. This work is divided into two broad parts. The first covers the epidemiology and pathology of AD, followed by a review of the role of PET imaging and tracers for AD detection. The second presents quantitative methods used in the literature for detecting AD, including the general linear model and statistical parametric mapping, 3D stereotactic surface projection, principal component analysis, scaled subprofile modeling, support vector machines, and neural networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122211463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122211463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Alison V. Roland; Cesar A.O. Coelho; Harold L. Haun; Carol A. Gianessi; Marcelo F. Lopez; Shannon D’Ambrosio; Samantha N. Machinski; Christopher D. Kroenke; Paul W. Frankland; Howard C. Becker; Thomas L. Kash;High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations.We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior.During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking.Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Diptendu Chatterjee; Dipashree Chatterjee; Samantha Mahabir; Robert Gerlai;pmid: 33864849
The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.
Progress in Neuro-Ps... arrow_drop_down Progress in Neuro-Psychopharmacology and Biological PsychiatryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefProgress in Neuro-Psychopharmacology and Biological PsychiatryJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnpbp.2021.110327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Progress in Neuro-Ps... arrow_drop_down Progress in Neuro-Psychopharmacology and Biological PsychiatryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefProgress in Neuro-Psychopharmacology and Biological PsychiatryJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnpbp.2021.110327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Oxford University Press (OUP) Funded by:NIH | NCANDA Research Project S..., NIH | The TEEN Study: The Impac..., NIH | National Consortium on Al... +4 projectsNIH| NCANDA Research Project Site: Duke ,NIH| The TEEN Study: The Impact of Adolescent Drinking on Connectivity in the Brain ,NIH| National Consortium on Alcohol and Neurodevelopment in Adolescence: Admin ,NIH| National Consortium on Alcohol and Neurodevelopment in Adolescence: San Diego ,NIH| National Consortium on Alcohol and NeuroDevelopment in Adolescence:Pittsburgh ,NIH| Sex Differences in Autonomic Nervous System Function and Depression Across Adolescence ,NIH| N-CANDA: Data Analysis ComponentDavid B. Goldston; M D De Bellis; Maria Alejandra Infante; Duncan B. Clark; Susan F. Tapert; Qingyu Zhao; Kilian M. Pohl; Kilian M. Pohl; Y Zhang; Fiona C. Baker; Edith V. Sullivan; Bonnie J. Nagel; Sandra A. Brown; Kate B. Nooner; Thompson Wk; Adolf Pfefferbaum; Adolf Pfefferbaum; Ian M. Colrain; Sonja Eberson; Ty Brumback;Abstract The age- and time-dependent effects of binge drinking on adolescent brain development have not been well characterized even though binge drinking is a health crisis among adolescents. The impact of binge drinking on gray matter volume (GMV) development was examined using 5 waves of longitudinal data from the National Consortium on Alcohol and NeuroDevelopment in Adolescence study. Binge drinkers (n = 166) were compared with non-binge drinkers (n = 82 after matching on potential confounders). Number of binge drinking episodes in the past year was linked to decreased GMVs in bilateral Desikan–Killiany cortical parcellations (26 of 34 with P < 0.05/34) with the strongest effects observed in frontal regions. Interactions of binge drinking episodes and baseline age demonstrated stronger effects in younger participants. Statistical models sensitive to number of binge episodes and their temporal proximity to brain volumes provided the best fits. Consistent with prior research, results of this study highlight the negative effects of binge drinking on the developing brain. Our results present novel findings that cortical GMV decreases were greater in closer proximity to binge drinking episodes in a dose–response manner. This relation suggests a causal effect and raises the possibility that normal growth trajectories may be reinstated with alcohol abstinence.
Cerebral Cortex arrow_drop_down Cerebral CortexArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefhttps://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhab368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cerebral Cortex arrow_drop_down Cerebral CortexArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefhttps://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/cercor/bhab368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Orsolya Kiss; Aimée Goldstone; Massimiliano de Zambotti; Dilara Yüksel; Brant P Hasler; Peter L Franzen; Sandra A Brown; Michael D De Bellis; Bonnie J Nagel; Kate B Nooner; Susan F Tapert; Ian M Colrain; Duncan B Clark; Fiona C Baker;Abstract Study Objectives Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use). Methods Adolescents (n = 94, 43% female, age: 12–21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline. Results Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males. Conclusions These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep–wake regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/sleep/zsad113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/sleep/zsad113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Ravinder Naik Dharavath; Celeste Pina-Leblanc; Celeste Pina-Leblanc; Victor M. Tang; +47 AuthorsRavinder Naik Dharavath; Celeste Pina-Leblanc; Celeste Pina-Leblanc; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Victor M. Tang; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Matthew E. Sloan; Yuliya S. Nikolova; Yuliya S. Nikolova; Peter Pangarov; Anthony C. Ruocco; Anthony C. Ruocco; Anthony C. Ruocco; Anthony C. Ruocco; Kevin Shield; Daphne Voineskos; Daphne Voineskos; Daphne Voineskos; Daniel M. Blumberger; Daniel M. Blumberger; Daniel M. Blumberger; Isabelle Boileau; Isabelle Boileau; Isabelle Boileau; Isabelle Boileau; Nikki Bozinoff; Nikki Bozinoff; Philip Gerretsen; Philip Gerretsen; Philip Gerretsen; Philip Gerretsen; Erica Vieira; Erica Vieira; Osnat C. Melamed; Osnat C. Melamed; Etienne Sibille; Etienne Sibille; Etienne Sibille; Lena C. Quilty; Lena C. Quilty; Thomas D. Prevot; Thomas D. Prevot;Alcohol is one of the most widely used substances. Alcohol use accounts for 5.1% of the global disease burden, contributes substantially to societal and economic costs, and leads to approximately 3 million global deaths yearly. Alcohol use disorder (AUD) includes various drinking behavior patterns that lead to short-term or long-lasting effects on health. Ethanol, the main psychoactive molecule acting in alcoholic beverages, directly impacts the GABAergic system, contributing to GABAergic dysregulations that vary depending on the intensity and duration of alcohol consumption. A small number of interventions have been developed that target the GABAergic system, but there are promising future therapeutic avenues to explore. This review provides an overview of the impact of alcohol on the GABAergic system, the current interventions available for AUD that target the GABAergic system, and the novel interventions being explored that in the future could be included among first-line therapies for the treatment of AUD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fncir.2023.1218737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fncir.2023.1218737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Cold Spring Harbor Laboratory Funded by:UKRI | Neurobiological underpinn..., NIH | ENIGMA Center for Worldwi..., EC | STRATIFY +12 projectsUKRI| Neurobiological underpinning of eating disorders: integrative biopsychosocial longitudinal analyses in adolescents ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,EC| STRATIFY ,UKRI| Consortium on Vulnerability to Externalizing Disorders and Addictions [c-VEDA] ,NIH| ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD ,ANR| ADODEP ,NIH| ENIGMA World Aging Center ,SFI| The Neurobiology of Voluntary Nicotine Abstinence: Genetics, Environment and Neurocognitive Endophenotypes ,DFG| Volition and Cognitive Control: Mechanisms, Modulators and Dysfunctions ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,NIH| Axon, Testosterone and Mental Health during Adolescence ,NIH| A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers ,UKRI| Establishing causal relationships between biopsychosocial predictors and correlates of eating disorders and their mediation by neural pathways ,NIH| COINSTAC: decentralized, scalable analysis of loosely coupled data ,NSF| CREST Center for Dynamic Multiscale and Multimodal Brain Mapping Over The Lifespan [D-MAP]Harshvardhan Gazula; Kelly Rootes-Murdy; Bharath Holla; Sunitha Basodi; Zuo Zhang; Eric Verner; Ross Kelly; Pratima Murthy; Amit Chakrabarti; Debasish Basu; Subodh Bhagyalakshmi Nanjayya; Rajkumar Lenin Singh; Roshan Lourembam Singh; Kartik Kalyanram; Kamakshi Kartik; Kumaran Kalyanaraman; Krishnaveni Ghattu; Rebecca Kuriyan; Sunita Simon Kurpad; Gareth J Barker; Rose Dawn Bharath; Sylvane Desrivieres; Meera Purushottam; Dimitri Papadopoulos Orfanos; Eesha Sharma; Matthew Hickman; Mireille Toledano; Nilakshi Vaidya; Tobias Banaschewski; Arun L.W. Bokde; Herta Flor; Antoine Grigis; Hugh Garavan; Penny Gowland; Andreas Heinz; Rüdiger Brühl; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Eric Artiges; Frauke Nees; Tomáš Paus; Luise Poustka; Juliane H. Fröhner; Lauren Robinson; Michael N. Smolka; Henrik Walter; Jeanne Winterer; Robert Whelan; Jessica A. Turner; Anand D. Sarwate; Sergey M. Plis; Vivek Benegal; Gunter Schumann; Vince D. Calhoun;pmid: 36434478
AbstractWith the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:NSERCNSERCAuthors: Ashifa Hudani; James A. White; Steven C. Greenway; Julio Garcia;doi: 10.3390/app122110946
Approximately 10% of congenital heart diseases (CHDs) include Tetralogy of Fallot (TOF). Fortunately, due to advanced surgical techniques, most patients survive until adulthood. However, these patients require frequent monitoring for postoperative complications leading to heart hemodynamic alterations. Turbulent kinetic energy (TKE), as derived from 4D-flow magnetic resonance imaging (4D-flow MRI), has been used to characterize abnormal heart hemodynamics in CHD. Hence, this study aimed to assess the difference in TKE between patients with repaired TOF (rTOF) and healthy volunteers. A total of 35 subjects, 17 rTOF patients and 18 controls, underwent standard-of-care cardiac MRI and research 4D-flow MRI using a clinical 3T scanner. Heart chambers and great vessels were segmented using 3D angiograms derived from 4D-flow MRI. The TKE was quantified within segmented volumes. TKE was compared to standard cardiac MRI metrics. Controls demonstrated higher TKE in the left atria and left ventricle. However, patients demonstrated higher TKE in the right atria, right ventricle (p < 0.05), and pulmonary artery. Lastly, no correlation was observed between TKE and standard clinical measurements. TKE can be a key indicator of the abnormal hemodynamics present in patients with rTOF and can assist future interventions and help monitor long-term outcomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122110946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122110946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Laura M. Lesnewich; Anthony P. Pawlak; Suril Gohel; Marsha E. Bates;doi: 10.1111/add.15828
pmid: 35129227
AbstractBackground and AimsBinge drinking contributes to the immense public health burden associated with alcohol use, especially among younger drinkers. Little is known about the underlying neurobiology of changes in this behavior over time. This preliminary study aimed to identify neurobiological markers of binge drinking behavior change during emerging adulthood.DesignObservational prospective investigation of neurobiological predictors of binge drinking behavior.SettingCommunities surrounding a large, public university in the northeastern United States.ParticipantsA total of 42 emerging adults (48% female), approximately half meeting criteria for an alcohol use disorder.MeasurementsPast month binge drinking, the dependent variable, was assessed at two time‐points (T1, T2) via self‐report. Ten indices of resting‐state functional connectivity within the central executive network (CEN), a brain network involved in executive function, were collected at T1 and specified as independent variables in cross‐sectional and prospective Poisson models. All models controlled for age, sex, and alcohol use disorder status.FindingsThe cross‐sectional model yielded five significant associations between CEN connectivity and binge drinking incidence. Connections anchored primarily in the anterior CEN exhibited negative associations with binge drinking incidence (P = 0.001, 0.004, 0.011), and connections stemming from the right posterior parietal cortex exhibited positive associations with binge drinking incidence (P = 0.041, 0.045). In prospective models, stronger frontoparietal connectivity between the right dorsolateral prefrontal cortex and left posterior parietal cortex predicted greater increases in binge drinking incidence over time (P = 0.003).ConclusionsThere is an association between central executive network connectivity and heavy drinking, as well as evidence that functional pathways within the central executive network may contribute to changes in problematic drinking behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley R. Colin Carter; Ernesta M. Meintjes; Neil C. Dodge; Lilla Zöllei; Christopher M. R. Warton; Nadine M. Lindinger; Fleur L. Warton; Joseph L. Jacobson; Joseph L. Jacobson; Pia Wintermark; Andre van der Kouwe; Andre van der Kouwe; Sandra W. Jacobson; Sandra W. Jacobson; Christopher D. Molteno;AbstractBackgroundPrenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double‐blind, placebo‐controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE‐related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory.MethodsFifty‐two infants born to heavy‐drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi‐echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline‐related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII.ResultsUsable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (β ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory.ConclusionsHigh‐dose choline supplementation during pregnancy mitigated PAE‐related regional volume reductions, with larger volumes associated with improved 12‐month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE‐related brain structural deficits in humans.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:NSERC, WTNSERC ,WTAuthors: Jarrad Perron; Ji Hyun Ko;doi: 10.3390/app122211463
The dementia spectrum is a broad range of disorders with complex diagnosis, pathophysiology, and a limited set of treatment options, where the most common variety is Alzheimer’s disease (AD). Positron emission tomography (PET) has become a valuable tool for the detection of AD; however, following the results of post-mortem studies, AD diagnosis has modest sensitivity and specificity at best. It remains common practice that readings of these images are performed by a physician’s subjective impressions of the spatial pattern of tracer uptake, and so quantitative methods based on established biomarkers have had little penetration into clinical practice. The present study is a review of the data-driven methods available for molecular neuroimaging studies (fluorodeoxyglucose-/amyloid-/tau-PET), with emphasis on the use of machine/deep learning as quantitative tools complementing the specialist in detecting AD. This work is divided into two broad parts. The first covers the epidemiology and pathology of AD, followed by a review of the role of PET imaging and tracers for AD detection. The second presents quantitative methods used in the literature for detecting AD, including the general linear model and statistical parametric mapping, 3D stereotactic surface projection, principal component analysis, scaled subprofile modeling, support vector machines, and neural networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122211463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app122211463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Alison V. Roland; Cesar A.O. Coelho; Harold L. Haun; Carol A. Gianessi; Marcelo F. Lopez; Shannon D’Ambrosio; Samantha N. Machinski; Christopher D. Kroenke; Paul W. Frankland; Howard C. Becker; Thomas L. Kash;High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations.We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior.During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking.Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2023.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu