- home
- Advanced Search
- Energy Research
- 2021-2025
- TH
- AT
- SDSN Greece
- Energy Research
- 2021-2025
- TH
- AT
- SDSN Greece
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Laimighofer, Johannes;The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 10 Jul 2024Publisher:Dryad Authors: Weisse, Thomas;The response of the single-celled ciliates to increased temperature during global warming is critical for the structure and functioning of freshwater food webs. I conducted a meta-analysis of the literature from field studies and experimental evidence to assess the parameters characterising the thermal response of freshwater ciliates. The shape of the thermal performance curve predicts the ciliates’ survival at supraoptimal temperatures (i.e., the width of the thermal safety margin, TSM). The ciliates’ typical TSM is ~5°C. One-third of the freshwater ciliates dwelling permanently or occasionally in the pelagial cannot survive at temperatures exceeding 30°C. Likewise, cold-stenothermic species, which represent a significant fraction of euplanktonic ciliates, cannot survive by evolutionary adaptation to rapidly warming environments. The statistical analysis revealed that the ciliates’ thermal performance is affected by their planktonic lifestyle (euplanktonic versus tychoplanktonic), ability to form cysts, and nutritional ecology. Bactivorous ciliates have the widest temperature niche, and algivorous ciliates have the narrowest temperature niche. Phenotypic plasticity and genetic variation, favouring the selection of pre-adapted species in a new environment, are widespread among freshwater ciliates. However, the lack of evidence for the temperature optima and imprecisely defined tolerance limits of most species hamper the present analysis. The extent of acclimation and adaptation requires further research with more ciliate species than the few chosen thus far. Recent eco-evolutionary experimental work and modelling approaches demonstrated that the ciliates’ thermal responses follow general trends predicted by the metabolic theory of ecology and mechanistic functions inherent in enzyme kinetics. The present analysis identified current knowledge gaps and avenues for future research that may serve as a model study for other biota. Thermal adaptation may conflict with adaptation to other stressors (predators, food availability, pH), making general predictions on the future role of freshwater ciliates in a warmer environment difficult, if not impossible, at the moment. # Data from: Thermal response of freshwater ciliates: can they survive at elevated lake temperatures? [https://doi.org/10.5061/dryad.jdfn2z3jr](https://doi.org/10.5061/dryad.jdfn2z3jr) The dataset results from a meta-analysis to assess the parameters characterising the thermal response of freshwater ciliates (i.e., minimum and maximum temperature tolerated, temperature niche breadth). Cyst formation, the nutritional type, and the planktonic lifestyle were considered as factors affecting the ciliates’ thermal performance. ## Description of the data and file structure The main dataset reporting ciliate species and synonyms, taxonomic affiliation, minimum and maximum temperature and the temperature range tolerated, cysts formation, mixotrophic nutrition, food type, and planktonic lifestyle are reported in the 'Dataset_v4.xlsx' file. This is the main document. Taxonomic affiliation (i.e., order) following Adl et al. (2019, reference [65]J, the GBIF Backbone Taxonomy, and Lynn (2008; reference [66]). Details on the references - i.e., authors, publication year, title, journal/book, volume, and page/article numbers used to compile this dataset and some comments can be found in 'References.xlsx'. Empty cells mean that information is unavailable. References A-E are the main sources of the dataset, i.e., comprehensive review articles published by W. Foissner and colleagues in the 1990s. References 1-64 are case studies, published mainly after 1999. References 65 and 66 refer to the taxonomic affiliation of the ciliate species. More details about each column of the main document can be found in the 'Units_table.xlsx' file. ## Sharing/Access information Data was derived from the following sources: * ISI Web of Science (All Data Bases) * Google Scholar ## Code/Software R statistical software (v 4.0.5, R Core Team 2021) with the packages lme4, lmtest, multcomp, AICcmodavg. WebPlotDigitizer (Version 4.6) for data extraction from figures ## Version changes **06-aug-2024**: Taxonomic affiliation (order) corrected according to GBIF. Genus *Tintinnidium* is now in the order Oligotrichida. I scrutinised the detailed literature compilations by Foissner and colleagues published in the 1990s; these references are listed as primary sources A-E in the Dataset, see References.xlsx and README.txt) to obtain an overview of the thermal performance, resting cyst formation, and nutritional ecology of planktonic freshwater ciliates. I then searched the ISI Web of Science (All Data Bases) for updates and cross-references of Foissner’s works and further temperature records from (mainly) field studies. Search terms (in all fields) for the latter were ciliate* AND temperature NOT marine NOT ocean NOT soil NOT parasit* (1,339 hits). I followed the PRISMA guidelines in combination with EndNote 20 to filter out the records eligible for screening and analysis. Temperature data for assessing the minimum (Tmin) and maximum temperature (Tmax) of occurrence were eventually extracted from 68 publications. However, because Foissner’s works present extensive reviews, the actual number of publications used for the analysis is much higher. The final dataset obtained from field studies comprised 206 ciliate species. Next, I searched the ISI Web of Science for experimental results, using ciliate* AND temperature AND growth rate* NOT marine as search terms (218 records). Removing results from unsuitable research areas (mainly from medical research) reduced the records to 71 publications, which were screened. The combination of ciliate* AND numerical response NOT marine yielded 40 studies, ciliate* AND thermal performance 21 hits. I checked the selected articles for citations and cross-references using Google Scholar to identify any publications that might have slipped my attention. Eventually, I picked experimental results from 18 studies. If the literature data were only shown in figures, I extracted the data from the plots with WebPlotDigitizer (Version 4.6). I analysed the dataset with the R Statistical Software using the packages lme4, lmerTest, stats, multcomp, AICcmodavg and car.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3jr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3jr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 08 Jan 2024Publisher:Dryad Authors: Weisse, Thomas;Contrasting physiological mortality with predator-induced mortality is of tremendous importance for the population dynamics of many organisms but is difficult to assess. I performed a meta-analysis using planktonic ciliates as model organisms to estimate the maximum physiological mortality rates (δmax) across pelagic ecosystems in relation to environmental and biotic factors. Data were compiled from published numerical response (NR) experiments and experimentally determined rates of decline (ROD). Variables reported are ciliate species and order, ciliate specific growth rates (rmax), prey species, temperature, habitat (marine vs freshwater), the coefficients of the numerical response experiments, and reported or calculated ciliate mortality rates. The median δmax of planktonic ciliates was 0.62 d−1 and did not differ between marine and freshwater species. Maximum ciliate mortality rates were species-specific and affected by their rmax, cell volume, and ability to encyst. Cyst-forming species had, on average, higher δmax than species unable to encyst. Maximum mortality rates of ciliates were positively related to rmax but appeared unaffected by temperature. I conclude that (i) in the ocean, physiological mortality is more critical for controlling ciliate population size than ciliate losses imposed by microcrustacean predation, but (ii) in many lakes, the opposite holds; (iii) cyst-formation is an effective ciliate trait to cope with the high mortality of motile cells upon starvation. The lack of a temperature effect on δmax deserves further study; if correct, planktonic ciliates may take advantage of rising ocean and lake temperatures, with important implications for the pelagic food web. I used ISI Web of Science and Google Scholar to search for experiments that measured growth and mortality rates of ciliates as a function of prey concentration (i.e. numerical responses). The search terms were “growth (rate)” or “numerical response” in combination with “ciliate*” to search for numerical response experiments and “starvation” or “starved” in combination with “ciliate*” to search for mortality experiments. In addition, I searched the literature cited in these publications for further datasets. I considered only planktonic ciliates. When studies did not report all parameters of the NR curve, the data were extracted from figures with DataThief III or WebPlotDigitizer (Version 4.6) and fitted with a modified Michaelis-Menten equation that included the threshold prey concentration (P’) as an additional parameter. Mortality rates obtained by ROD experiments used the δmax reported in the respective study or calculated δmax from the maximum rate of decline after digitizing the data from the original curves, as described above. The literature search yielded δmax reported from 41 studies investigating 56 species or strains in 81 NR experiments and 19 ROD experiments. The final dataset (n = 77) included 37 studies and 48 species. I analyzed the dataset using the R Statistical Software using the packages lme4, lmerTest, AICcmodavg, and MuMIn. # Physiological mortality rates of planktonic ciliates ## Description of the Data and file structure I used ISI Web of Science and Google Scholar to search for experiments that measured growth and mortality rates of ciliates as a function of prey concentration (i.e. numerical responses). The main dataset containing available experimental studies reporting ciliate species, experimental temperature, prey species, ciliate maximum growth rates, ciliate cell volumes, habitat of ciliate isolation, method of study and reported or calculated ciliate mortality rates are reported in the 'Dataset_v2.xlsx' file. This is the main document. Missing data codes: N.A. = not available; n/a = not applicable. More details about each column of the main document can be found in the 'Units_table.xlsx' file. Details on the references - i.e. authors, publication year, title, journal/book, volume and page/article numbers - used to compile this dataset can be found in 'References.xlsx'. ## Sharing/access Information The individual data were derived mainly from the ISI Web of Science. The data compilation is novel. Excel, R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cnp5hqc99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cnp5hqc99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Herbert Formayer; Philipp Maier; Imran Nadeem; David Leidinger; Fabian Lehner; Franziska Schöniger; Gustav Resch; Demet Suna; Peter Widhalm; Nicolas Pardo-Garcia; Florian Hasengst; Gerhard Totschnig;For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling. The SECURES-Met dataset provides variables visible in the table. Variable Short name Unit Aggregation methods Temporal resolution Temperature (2m) T2M °C °C spatial mean population weighted mean (recommended) hourly Radiation GLO (mean global radiation) BNI (direct normal irradiation) Wm-2 Wm-2 spatial mean population weighted mean (recommended) hourly Potential Wind Power WP 1 normalized with potentially available area hourly Hydro Power Potential HYD-RES (reservoir) HYD-ROR (run-of-river) MW 1 summed power production summed power production normalized with average daily production daily SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level NUTS0 (country-wide), NUTS2 (province-wide), NUTS3 (Austria only), and EEZ (Exclusive Economic Zones, offshore only). The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only. The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Laimighofer, Johannes;The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 10 Jul 2024Publisher:Dryad Authors: Weisse, Thomas;The response of the single-celled ciliates to increased temperature during global warming is critical for the structure and functioning of freshwater food webs. I conducted a meta-analysis of the literature from field studies and experimental evidence to assess the parameters characterising the thermal response of freshwater ciliates. The shape of the thermal performance curve predicts the ciliates’ survival at supraoptimal temperatures (i.e., the width of the thermal safety margin, TSM). The ciliates’ typical TSM is ~5°C. One-third of the freshwater ciliates dwelling permanently or occasionally in the pelagial cannot survive at temperatures exceeding 30°C. Likewise, cold-stenothermic species, which represent a significant fraction of euplanktonic ciliates, cannot survive by evolutionary adaptation to rapidly warming environments. The statistical analysis revealed that the ciliates’ thermal performance is affected by their planktonic lifestyle (euplanktonic versus tychoplanktonic), ability to form cysts, and nutritional ecology. Bactivorous ciliates have the widest temperature niche, and algivorous ciliates have the narrowest temperature niche. Phenotypic plasticity and genetic variation, favouring the selection of pre-adapted species in a new environment, are widespread among freshwater ciliates. However, the lack of evidence for the temperature optima and imprecisely defined tolerance limits of most species hamper the present analysis. The extent of acclimation and adaptation requires further research with more ciliate species than the few chosen thus far. Recent eco-evolutionary experimental work and modelling approaches demonstrated that the ciliates’ thermal responses follow general trends predicted by the metabolic theory of ecology and mechanistic functions inherent in enzyme kinetics. The present analysis identified current knowledge gaps and avenues for future research that may serve as a model study for other biota. Thermal adaptation may conflict with adaptation to other stressors (predators, food availability, pH), making general predictions on the future role of freshwater ciliates in a warmer environment difficult, if not impossible, at the moment. # Data from: Thermal response of freshwater ciliates: can they survive at elevated lake temperatures? [https://doi.org/10.5061/dryad.jdfn2z3jr](https://doi.org/10.5061/dryad.jdfn2z3jr) The dataset results from a meta-analysis to assess the parameters characterising the thermal response of freshwater ciliates (i.e., minimum and maximum temperature tolerated, temperature niche breadth). Cyst formation, the nutritional type, and the planktonic lifestyle were considered as factors affecting the ciliates’ thermal performance. ## Description of the data and file structure The main dataset reporting ciliate species and synonyms, taxonomic affiliation, minimum and maximum temperature and the temperature range tolerated, cysts formation, mixotrophic nutrition, food type, and planktonic lifestyle are reported in the 'Dataset_v4.xlsx' file. This is the main document. Taxonomic affiliation (i.e., order) following Adl et al. (2019, reference [65]J, the GBIF Backbone Taxonomy, and Lynn (2008; reference [66]). Details on the references - i.e., authors, publication year, title, journal/book, volume, and page/article numbers used to compile this dataset and some comments can be found in 'References.xlsx'. Empty cells mean that information is unavailable. References A-E are the main sources of the dataset, i.e., comprehensive review articles published by W. Foissner and colleagues in the 1990s. References 1-64 are case studies, published mainly after 1999. References 65 and 66 refer to the taxonomic affiliation of the ciliate species. More details about each column of the main document can be found in the 'Units_table.xlsx' file. ## Sharing/Access information Data was derived from the following sources: * ISI Web of Science (All Data Bases) * Google Scholar ## Code/Software R statistical software (v 4.0.5, R Core Team 2021) with the packages lme4, lmtest, multcomp, AICcmodavg. WebPlotDigitizer (Version 4.6) for data extraction from figures ## Version changes **06-aug-2024**: Taxonomic affiliation (order) corrected according to GBIF. Genus *Tintinnidium* is now in the order Oligotrichida. I scrutinised the detailed literature compilations by Foissner and colleagues published in the 1990s; these references are listed as primary sources A-E in the Dataset, see References.xlsx and README.txt) to obtain an overview of the thermal performance, resting cyst formation, and nutritional ecology of planktonic freshwater ciliates. I then searched the ISI Web of Science (All Data Bases) for updates and cross-references of Foissner’s works and further temperature records from (mainly) field studies. Search terms (in all fields) for the latter were ciliate* AND temperature NOT marine NOT ocean NOT soil NOT parasit* (1,339 hits). I followed the PRISMA guidelines in combination with EndNote 20 to filter out the records eligible for screening and analysis. Temperature data for assessing the minimum (Tmin) and maximum temperature (Tmax) of occurrence were eventually extracted from 68 publications. However, because Foissner’s works present extensive reviews, the actual number of publications used for the analysis is much higher. The final dataset obtained from field studies comprised 206 ciliate species. Next, I searched the ISI Web of Science for experimental results, using ciliate* AND temperature AND growth rate* NOT marine as search terms (218 records). Removing results from unsuitable research areas (mainly from medical research) reduced the records to 71 publications, which were screened. The combination of ciliate* AND numerical response NOT marine yielded 40 studies, ciliate* AND thermal performance 21 hits. I checked the selected articles for citations and cross-references using Google Scholar to identify any publications that might have slipped my attention. Eventually, I picked experimental results from 18 studies. If the literature data were only shown in figures, I extracted the data from the plots with WebPlotDigitizer (Version 4.6). I analysed the dataset with the R Statistical Software using the packages lme4, lmerTest, stats, multcomp, AICcmodavg and car.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3jr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3jr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 08 Jan 2024Publisher:Dryad Authors: Weisse, Thomas;Contrasting physiological mortality with predator-induced mortality is of tremendous importance for the population dynamics of many organisms but is difficult to assess. I performed a meta-analysis using planktonic ciliates as model organisms to estimate the maximum physiological mortality rates (δmax) across pelagic ecosystems in relation to environmental and biotic factors. Data were compiled from published numerical response (NR) experiments and experimentally determined rates of decline (ROD). Variables reported are ciliate species and order, ciliate specific growth rates (rmax), prey species, temperature, habitat (marine vs freshwater), the coefficients of the numerical response experiments, and reported or calculated ciliate mortality rates. The median δmax of planktonic ciliates was 0.62 d−1 and did not differ between marine and freshwater species. Maximum ciliate mortality rates were species-specific and affected by their rmax, cell volume, and ability to encyst. Cyst-forming species had, on average, higher δmax than species unable to encyst. Maximum mortality rates of ciliates were positively related to rmax but appeared unaffected by temperature. I conclude that (i) in the ocean, physiological mortality is more critical for controlling ciliate population size than ciliate losses imposed by microcrustacean predation, but (ii) in many lakes, the opposite holds; (iii) cyst-formation is an effective ciliate trait to cope with the high mortality of motile cells upon starvation. The lack of a temperature effect on δmax deserves further study; if correct, planktonic ciliates may take advantage of rising ocean and lake temperatures, with important implications for the pelagic food web. I used ISI Web of Science and Google Scholar to search for experiments that measured growth and mortality rates of ciliates as a function of prey concentration (i.e. numerical responses). The search terms were “growth (rate)” or “numerical response” in combination with “ciliate*” to search for numerical response experiments and “starvation” or “starved” in combination with “ciliate*” to search for mortality experiments. In addition, I searched the literature cited in these publications for further datasets. I considered only planktonic ciliates. When studies did not report all parameters of the NR curve, the data were extracted from figures with DataThief III or WebPlotDigitizer (Version 4.6) and fitted with a modified Michaelis-Menten equation that included the threshold prey concentration (P’) as an additional parameter. Mortality rates obtained by ROD experiments used the δmax reported in the respective study or calculated δmax from the maximum rate of decline after digitizing the data from the original curves, as described above. The literature search yielded δmax reported from 41 studies investigating 56 species or strains in 81 NR experiments and 19 ROD experiments. The final dataset (n = 77) included 37 studies and 48 species. I analyzed the dataset using the R Statistical Software using the packages lme4, lmerTest, AICcmodavg, and MuMIn. # Physiological mortality rates of planktonic ciliates ## Description of the Data and file structure I used ISI Web of Science and Google Scholar to search for experiments that measured growth and mortality rates of ciliates as a function of prey concentration (i.e. numerical responses). The main dataset containing available experimental studies reporting ciliate species, experimental temperature, prey species, ciliate maximum growth rates, ciliate cell volumes, habitat of ciliate isolation, method of study and reported or calculated ciliate mortality rates are reported in the 'Dataset_v2.xlsx' file. This is the main document. Missing data codes: N.A. = not available; n/a = not applicable. More details about each column of the main document can be found in the 'Units_table.xlsx' file. Details on the references - i.e. authors, publication year, title, journal/book, volume and page/article numbers - used to compile this dataset can be found in 'References.xlsx'. ## Sharing/access Information The individual data were derived mainly from the ISI Web of Science. The data compilation is novel. Excel, R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cnp5hqc99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cnp5hqc99&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Herbert Formayer; Philipp Maier; Imran Nadeem; David Leidinger; Fabian Lehner; Franziska Schöniger; Gustav Resch; Demet Suna; Peter Widhalm; Nicolas Pardo-Garcia; Florian Hasengst; Gerhard Totschnig;For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling. The SECURES-Met dataset provides variables visible in the table. Variable Short name Unit Aggregation methods Temporal resolution Temperature (2m) T2M °C °C spatial mean population weighted mean (recommended) hourly Radiation GLO (mean global radiation) BNI (direct normal irradiation) Wm-2 Wm-2 spatial mean population weighted mean (recommended) hourly Potential Wind Power WP 1 normalized with potentially available area hourly Hydro Power Potential HYD-RES (reservoir) HYD-ROR (run-of-river) MW 1 summed power production summed power production normalized with average daily production daily SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level NUTS0 (country-wide), NUTS2 (province-wide), NUTS3 (Austria only), and EEZ (Exclusive Economic Zones, offshore only). The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only. The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu