- home
- Advanced Search
- Energy Research
- AR
- Energy Research
- AR
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Ian J. Wright; Hiroko Kurokawa; Hiroko Kurokawa; Louis S. Santiago; Nadejda A. Soudzilovskaia; Nadejda A. Soudzilovskaia; David A. Wardle; David A. Wardle; Victor Brovkin; Peter M. van Bodegom; Diego E. Gurvich; William K. Cornwell; Mark Westoby; Elena Kazakou; Jenny Read; Natalia Pérez-Harguindeguy; Peter B. Reich; Oscar Godoy; Bart Hoorens; Steven D. Allison; Johannes H. C. Cornelissen; Sarah E. Hobbie; Terry V. Callaghan; Ellen Dorrepaal; Valerie T. Eviner; Alex Chatain; M. Victoria Vaieretti; Sandra Díaz; Julia A. Klein; Kathryn L. Amatangelo; Rien Aerts; Helen M. Quested; Eric Garnier;AbstractWorldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species‐driven differences is much larger than previously thought and greater than climate‐driven variation; (ii) the decomposability of a species’ litter is consistently correlated with that species’ ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of the global carbon cycle.
DSpace at VU arrow_drop_down Ecology LettersArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2008.01219.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2K citations 2,253 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert DSpace at VU arrow_drop_down Ecology LettersArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2008.01219.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, South Africa, Italy, Italy, Portugal, Portugal, Brazil, United States, Spain, Germany, FinlandPublisher:Wiley Funded by:EC | BioFUNCEC| BioFUNCKahua Julian; Margaret M. Mayfield; Joaquim S. Silva; Joaquim S. Silva; Maia L. Raymundo; Rebecca Ostertag; Tiina Ylioja; Nicola La Porta; Hamish G. Maule; Hélia Marchante; Hélia Marchante; Nicole DiManno; A. Saldaña; Ana Sofia Vaz; Orna Reisman-Berman; Josef Urban; Josef Urban; Ingrid M. Parker; Álvaro Bayón; Mariana C. Chiuffo; Oscar Godoy; Daniel J. Metcalfe; Luke J. Potgieter; M. Cristina Monteverdi; Rafael D. Zenni; Marcela van Loo; Donald Rayome; Susanne Kandert; Ruben E. Roos; Peter J. Bellingham; Duane A. Peltzer; Álvaro Alonso; Pilar Castro-Díez; Joana R. Vicente; Joana R. Vicente; Melinda S. Trudgen; Melinda S. Trudgen; Martin A. Nuñez; Cristina Aponte; David M. Richardson; Agostina Torres; Montserrat Vilà; Ross T. Shackleton;doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 10449/67570 , 11343/250944 , 10019.1/110774 , 10019.1/117104
doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 10449/67570 , 11343/250944 , 10019.1/110774 , 10019.1/117104
ABSTRACTNon‐native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well‐being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision‐making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta‐analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio‐economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low‐latitude biomes; some CES are increased more by NNTs in less‐wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade‐offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade‐offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 182 citations 182 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 202visibility views 202 download downloads 212 Powered bymore_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Ian J. Wright; Hiroko Kurokawa; Hiroko Kurokawa; Louis S. Santiago; Nadejda A. Soudzilovskaia; Nadejda A. Soudzilovskaia; David A. Wardle; David A. Wardle; Victor Brovkin; Peter M. van Bodegom; Diego E. Gurvich; William K. Cornwell; Mark Westoby; Elena Kazakou; Jenny Read; Natalia Pérez-Harguindeguy; Peter B. Reich; Oscar Godoy; Bart Hoorens; Steven D. Allison; Johannes H. C. Cornelissen; Sarah E. Hobbie; Terry V. Callaghan; Ellen Dorrepaal; Valerie T. Eviner; Alex Chatain; M. Victoria Vaieretti; Sandra Díaz; Julia A. Klein; Kathryn L. Amatangelo; Rien Aerts; Helen M. Quested; Eric Garnier;AbstractWorldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species‐driven differences is much larger than previously thought and greater than climate‐driven variation; (ii) the decomposability of a species’ litter is consistently correlated with that species’ ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of the global carbon cycle.
DSpace at VU arrow_drop_down Ecology LettersArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2008.01219.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2K citations 2,253 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert DSpace at VU arrow_drop_down Ecology LettersArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2008.01219.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, South Africa, Italy, Italy, Portugal, Portugal, Brazil, United States, Spain, Germany, FinlandPublisher:Wiley Funded by:EC | BioFUNCEC| BioFUNCKahua Julian; Margaret M. Mayfield; Joaquim S. Silva; Joaquim S. Silva; Maia L. Raymundo; Rebecca Ostertag; Tiina Ylioja; Nicola La Porta; Hamish G. Maule; Hélia Marchante; Hélia Marchante; Nicole DiManno; A. Saldaña; Ana Sofia Vaz; Orna Reisman-Berman; Josef Urban; Josef Urban; Ingrid M. Parker; Álvaro Bayón; Mariana C. Chiuffo; Oscar Godoy; Daniel J. Metcalfe; Luke J. Potgieter; M. Cristina Monteverdi; Rafael D. Zenni; Marcela van Loo; Donald Rayome; Susanne Kandert; Ruben E. Roos; Peter J. Bellingham; Duane A. Peltzer; Álvaro Alonso; Pilar Castro-Díez; Joana R. Vicente; Joana R. Vicente; Melinda S. Trudgen; Melinda S. Trudgen; Martin A. Nuñez; Cristina Aponte; David M. Richardson; Agostina Torres; Montserrat Vilà; Ross T. Shackleton;doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 10449/67570 , 11343/250944 , 10019.1/110774 , 10019.1/117104
doi: 10.1111/brv.12511
pmid: 30974048
pmc: PMC6850375
handle: 10261/189851 , 10449/67570 , 11343/250944 , 10019.1/110774 , 10019.1/117104
ABSTRACTNon‐native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well‐being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision‐making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta‐analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio‐economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low‐latitude biomes; some CES are increased more by NNTs in less‐wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade‐offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade‐offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 182 citations 182 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 202visibility views 202 download downloads 212 Powered bymore_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2019Full-Text: http://hdl.handle.net/10449/67570Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/250944Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedUniversidade de Lisboa: Repositório.ULArticle . 2019License: CC BY NC NDData sources: Universidade de Lisboa: Repositório.ULThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu