- home
- Advanced Search
- Energy Research
- AT
- Kasetsart University
- Energy Research
- AT
- Kasetsart University
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 12 Jun 2018 Germany, United Kingdom, United Kingdom, United Kingdom, SwitzerlandPublisher:IOP Publishing Yadu Pokhrel; Yusuke Satoh; Dieter Gerten; Dieter Gerten; Guoyong Leng; Taikan Oki; Taikan Oki; Ingjerd Haddeland; Jamal Zaherpour; Ted Veldkamp; Ted Veldkamp; Nick J. Mount; Yoshimitsu Masaki; Rutger Dankers; Jacob Schewe; Naota Hanasaki; Hyungjun Kim; Yoshihide Wada; Junguo Liu; Stephanie Eisner; Lukas Gudmundsson; Simon N. Gosling; Hannes Müller Schmied;Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output. Environmental Research Letters, 13 (6) ISSN:1748-9326 ISSN:1748-9318
Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 11 Powered bymore_vert Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Martina Flörke; L. P. H. van Beek; Stephanie Eisner; Yoshihide Wada; Marc F. P. Bierkens; M.T.H. van Vliet; M.T.H. van Vliet;Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Andras Darabant; Andras Darabant; Wanida Atkla; Kasem Haruthaithanasan; Eakpong Thanavat; Tepa Phudphong; Maliwan Haruthaithanasan;AbstractBamboo plantations in two locations in eastern Thailand differed in their biomass yield by an order of magnitude as a result of site productivity and plantation management. The biomass yield of Bambusa beecheyana and Dendrocalamus membranaceus was comparable, but the moisture content of culms of B. beecheyana was considerably higher as compared to D. membranaceus. With D. membranaceus, internodes had higher moisture content, as compared to nodes. The moisture content decreased with increasing height along culms with both species, but this gradient was stronger with D. membranaceus. The moisture content of culms of B. beecheyana declined with increasing culm age, indicating that older culms are more suitable for energetic utilization. While general feedstock characteristics of the two species were comparable, the calorific content of D. membranaceus was significantly higher than of B. beecheyana. Primarily the upper sections and nodes of older culms of both species are attractive options as bioenergy feedstock, but plantations established on marginal sites without proper plantation management will result in very low yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Viktor J. Bruckman; Maliwan Haruthaithanasan; Raymond O. Miller; Toru Terada; Anna-Katharina Brenner; Florian Kraxner; David Flaspohler;doi: 10.3390/f9040223
We conducted a feasibility study in Indochina (Cambodia, Laos, Myanmar, Thailand, and Vietnam) with the aim of promoting biomass and bioenergy markets, technology transfer, rural development, and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force “Sustainable Forest Bioenergy Network”. In this paper, we highlight the achievements up to now and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDPs). We found a gap between official documents and working group assessments. NBDPs are focused on the market development, technology transfer, and funding possibilities of a regional bioenergy strategy, while the respondents of a questionnaire (working groups) favored more altruistic goals, i.e., sustainable resource management, environmental protection and climate change mitigation, generation of rural income, and community involvement, etc. We therefore suggest the following measures to ensure regulations that support the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use, and diversification of energy generation): (i) Consideration of science-based evidence for drafting bioenergy policies, particularly in the field of biomass production and harvesting; (ii) invitation of stakeholders representing rural communities to participate in this process; (iii) development of sustainability criteria; (iv) feedback cycles ensuring more intensive discussion of policy drafts; (v) association of an international board of experts to provide scientifically sound feedback and input; and (vi) establishment of a local demonstration region, containing various steps in the biomass/bioenergy supply chain including transboundary collaboration in the ACMECS region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2019 United Kingdom, FrancePublisher:Elsevier BV Funded by:FCT | Center for Environmental ..., EPA, UKRI | Integrated Development of... +1 projectsFCT| Center for Environmental and Sustainability Research ,EPA ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National Strategy ,EC| ERA4CSSofia Simoes; Iain Staffell; Yves-Marie Saint-Drenan; Johannes Schmidt; Katharina Gruber; Alberto Troccoli; Alberto Troccoli; Malte Jansen; Siegfried Heier; Laurent Dubus; Romain Besseau;arXiv: 1909.13780
A wind turbine's power curve relates its power production to the wind speed it experiences. The typical shape of a power curve is well known and has been studied extensively; however, the power curves of individual turbine models can vary widely from one another. This is due to both the technical features of the turbine (power density, cut-in and cut-out speeds, limits on rotational speed and aerodynamic efficiency), and environmental factors (turbulence intensity, air density, wind shear and wind veer). Data on individual power curves are often proprietary and only available through commercial databases. We therefore develop an open-source model which can generate the power curve of any turbine, adapted to the specific conditions of any site. This can employ one of six parametric models advanced in the literature, and accounts for the eleven variables mentioned above. The model is described, the impact of each technical and environmental feature is examined, and it is then validated against the manufacturer power curves of 91 turbine models. Versions of the model are made available in MATLAB, R and Python code for the community. preprint submitted to Renewable Energy
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2020License: CC BY NCFull-Text: https://hal.science/hal-03113055Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.04.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 180 Powered bymore_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2020License: CC BY NCFull-Text: https://hal.science/hal-03113055Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.04.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustriaPublisher:Elsevier BV A. Probst; Michael Probst; Thana Maihom; Daniel Süß; Andreas Mauracher; Lei Chen; Alexander Kaiser;Beryllium and tungsten species can form by plasma-induced erosion of the walls of a fusion reactor. Accurate and fast evaluation of energies and geometries of Be/W/H compounds is needed for direct molecular dynamics of the plasma-wall interface or for generating training data for potential energy surfaces. Density functional calculations can serve this purpose but within the magnitude of suggested functionals no single one is the obvious choice. We investigate the performance of compact linear combinations of density functionals on some Be/W/H compounds by statistical machine learning.Equilibrium geometries and atomization energies of the neutral molecules Ben, BenHm, Wn, WnBem, and WnHm with m+n≤4 from 16 density functionals were compared with their counterparts from coupled cluster calculations. A statistical learning method was used to find combinations of these functionals that can accurately reproduce the results of the much more costly coupled cluster method. Linear models of two or three functionals predict the coupled cluster data quite well with an accuracy of 98.2% and 99.7%, respectively, much better than any of the functionals alone. This simple procedure is, for example, useful for the calculation of species concentrations in reaction networks of molecules close to plasma facing components in a fusion device. Accurate molecular energies are crucial for determining the species concentrations which depend exponentially on their differences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.101026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.101026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Denmark, France, France, SwitzerlandPublisher:Wiley Hannes Gaisberger; Tobias Fremout; Chris J. Kettle; Barbara Vinceti; Della Kemalasari; Tania Kanchanarak; Evert Thomas; Josep M. Serra‐Diaz; Jens‐Christian Svenning; Ferry Slik; Wichan Eiadthong; Kandasamy Palanisamy; Gudasalamani Ravikanth; Vilma Bodos; Julia Sang; Rekha R. Warrier; Alison K. S. Wee; Christian Elloran; Lawrence Tolentino Ramos; Matieu Henry; Md. Akhter Hossain; Ida Theilade; Simon Laegaard; K. M. A. Bandara; Dimantha Panduka Weerasinghe; Suchitra Changtragoon; Vivi Yuskianti; Peter Wilkie; Nguyen Hoang Nghia; Stephen Elliott; Greuk Pakkad; Pimonrat Tiansawat; Colin Maycock; Chaloun Bounithiphonh; Rozi Mohamed; M. Nazre; Baktiar Nur Siddiqui; Soon‐Leong Lee; Chai‐Ting Lee; Nurul Farhanah Zakaria; Ida Hartvig; Lutz Lehmann; Dzaeman B. Dzulkifli David; Jens‐Peter Barnekow Lillesø; Chhang Phourin; Zheng Yongqi; Huang Ping; Hugo A. Volkaert; Lars Graudal; Arief Hamidi; So Thea; Sineath Sreng; David Boshier; Enrique Tolentino; Wickneswari Ratnam; Mu Mu Aung; Michael Galante; Siti Fatimah Md Isa; Nguyen Quoc Dung; Tran Thi Hoa; Tran Chan Le; Md. Danesh Miah; Abdul Lateef Mohd Zuhry; Deepani Alawathugoda; Amelia Azman; Gamini Pushpakumara; Nur Sumedi; Iskandar Z. Siregar; Hong Kyung Nak; Jean Linsky; Megan Barstow; Lian Pin Koh; Riina Jalonen;AbstractTree diversity in Asia's tropical and subtropical forests is central to nature‐based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region‐wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species‐specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/118017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/118017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, South Africa, Australia, New ZealandPublisher:Elsevier BV Svetlana V. Feigin; David O. Wiebers; George Lueddeke; Serge Morand; Kelley Lee; Andrew Knight; Michael Brainin; Valery L. Feigin; Amanda Whitfort; James Marcum; Todd K. Shackelford; Lee F. Skerratt; Andrea S. Winkler;Humanity is now facing what may be the biggest challenge to its existence: irreversible climate change brought about by human activity. Our planet is in a state of emergency, and we only have a short window of time (7-8 years) to enact meaningful change. The goal of this systematic literature review is to summarize the peer-reviewed literature on proposed solutions to climate change in the last 20 years (2002-2022), and to propose a framework for a unified approach to solving this climate change crisis. Solutions reviewed include a transition toward use of renewable energy resources, reduced energy consumption, rethinking the global transport sector, and nature-based solutions. This review highlights one of the most important but overlooked pieces in the puzzle of solving the climate change problem - the gradual shift to a plant-based diet and global phaseout of factory (industrialized animal) farming, the most damaging and prolific form of animal agriculture. The gradual global phaseout of industrialized animal farming can be achieved by increasingly replacing animal meat and other animal products with plant-based products, ending government subsidies for animal-based meat, dairy, and eggs, and initiating taxes on such products. Failure to act will ultimately result in a scenario of irreversible climate change with widespread famine and disease, global devastation, climate refugees, and warfare. We therefore suggest an "All Life" approach, invoking the interconnectedness of all life forms on our planet. The logistics for achieving this include a global standardization of Environmental, Social, and Governance (ESG) or similar measures and the introduction of a regulatory body for verification of such measures. These approaches will help deliver environmental and sustainability benefits for our planet far beyond an immediate reduction in global warming.
Auckland University ... arrow_drop_down Auckland University of Technology: Tuwhera Open ResearchArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427336Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/93405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e20544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Auckland University ... arrow_drop_down Auckland University of Technology: Tuwhera Open ResearchArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427336Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/93405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e20544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:American Geophysical Union (AGU) Naota Hanasaki; Taher Kahil; Stephanie Eisner; Martina Flörke; Simon J. Langan; Yusuke Satoh; Luzma Fabiola Nava; Sylvia Tramberend; Edward Byers; Piotr Magnuszewski; Günther Fischer; Peter Burek; Peter Greve; William J. Cosgrove; Yoshihide Wada; Yoshihide Wada;doi: 10.1002/2016ef000503
AbstractThis paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state‐of‐the‐art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30–40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia‐Pacific region, with a population of 1.6–2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin‐level analysis of the hydro‐economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid‐21st century.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 12 Jun 2018 Germany, United Kingdom, United Kingdom, United Kingdom, SwitzerlandPublisher:IOP Publishing Yadu Pokhrel; Yusuke Satoh; Dieter Gerten; Dieter Gerten; Guoyong Leng; Taikan Oki; Taikan Oki; Ingjerd Haddeland; Jamal Zaherpour; Ted Veldkamp; Ted Veldkamp; Nick J. Mount; Yoshimitsu Masaki; Rutger Dankers; Jacob Schewe; Naota Hanasaki; Hyungjun Kim; Yoshihide Wada; Junguo Liu; Stephanie Eisner; Lukas Gudmundsson; Simon N. Gosling; Hannes Müller Schmied;Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output. Environmental Research Letters, 13 (6) ISSN:1748-9326 ISSN:1748-9318
Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 11 Powered bymore_vert Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Martina Flörke; L. P. H. van Beek; Stephanie Eisner; Yoshihide Wada; Marc F. P. Bierkens; M.T.H. van Vliet; M.T.H. van Vliet;Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Andras Darabant; Andras Darabant; Wanida Atkla; Kasem Haruthaithanasan; Eakpong Thanavat; Tepa Phudphong; Maliwan Haruthaithanasan;AbstractBamboo plantations in two locations in eastern Thailand differed in their biomass yield by an order of magnitude as a result of site productivity and plantation management. The biomass yield of Bambusa beecheyana and Dendrocalamus membranaceus was comparable, but the moisture content of culms of B. beecheyana was considerably higher as compared to D. membranaceus. With D. membranaceus, internodes had higher moisture content, as compared to nodes. The moisture content decreased with increasing height along culms with both species, but this gradient was stronger with D. membranaceus. The moisture content of culms of B. beecheyana declined with increasing culm age, indicating that older culms are more suitable for energetic utilization. While general feedstock characteristics of the two species were comparable, the calorific content of D. membranaceus was significantly higher than of B. beecheyana. Primarily the upper sections and nodes of older culms of both species are attractive options as bioenergy feedstock, but plantations established on marginal sites without proper plantation management will result in very low yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Viktor J. Bruckman; Maliwan Haruthaithanasan; Raymond O. Miller; Toru Terada; Anna-Katharina Brenner; Florian Kraxner; David Flaspohler;doi: 10.3390/f9040223
We conducted a feasibility study in Indochina (Cambodia, Laos, Myanmar, Thailand, and Vietnam) with the aim of promoting biomass and bioenergy markets, technology transfer, rural development, and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force “Sustainable Forest Bioenergy Network”. In this paper, we highlight the achievements up to now and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDPs). We found a gap between official documents and working group assessments. NBDPs are focused on the market development, technology transfer, and funding possibilities of a regional bioenergy strategy, while the respondents of a questionnaire (working groups) favored more altruistic goals, i.e., sustainable resource management, environmental protection and climate change mitigation, generation of rural income, and community involvement, etc. We therefore suggest the following measures to ensure regulations that support the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use, and diversification of energy generation): (i) Consideration of science-based evidence for drafting bioenergy policies, particularly in the field of biomass production and harvesting; (ii) invitation of stakeholders representing rural communities to participate in this process; (iii) development of sustainability criteria; (iv) feedback cycles ensuring more intensive discussion of policy drafts; (v) association of an international board of experts to provide scientifically sound feedback and input; and (vi) establishment of a local demonstration region, containing various steps in the biomass/bioenergy supply chain including transboundary collaboration in the ACMECS region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9040223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2019 United Kingdom, FrancePublisher:Elsevier BV Funded by:FCT | Center for Environmental ..., EPA, UKRI | Integrated Development of... +1 projectsFCT| Center for Environmental and Sustainability Research ,EPA ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National Strategy ,EC| ERA4CSSofia Simoes; Iain Staffell; Yves-Marie Saint-Drenan; Johannes Schmidt; Katharina Gruber; Alberto Troccoli; Alberto Troccoli; Malte Jansen; Siegfried Heier; Laurent Dubus; Romain Besseau;arXiv: 1909.13780
A wind turbine's power curve relates its power production to the wind speed it experiences. The typical shape of a power curve is well known and has been studied extensively; however, the power curves of individual turbine models can vary widely from one another. This is due to both the technical features of the turbine (power density, cut-in and cut-out speeds, limits on rotational speed and aerodynamic efficiency), and environmental factors (turbulence intensity, air density, wind shear and wind veer). Data on individual power curves are often proprietary and only available through commercial databases. We therefore develop an open-source model which can generate the power curve of any turbine, adapted to the specific conditions of any site. This can employ one of six parametric models advanced in the literature, and accounts for the eleven variables mentioned above. The model is described, the impact of each technical and environmental feature is examined, and it is then validated against the manufacturer power curves of 91 turbine models. Versions of the model are made available in MATLAB, R and Python code for the community. preprint submitted to Renewable Energy
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2020License: CC BY NCFull-Text: https://hal.science/hal-03113055Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.04.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 180 Powered bymore_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2020License: CC BY NCFull-Text: https://hal.science/hal-03113055Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.04.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustriaPublisher:Elsevier BV A. Probst; Michael Probst; Thana Maihom; Daniel Süß; Andreas Mauracher; Lei Chen; Alexander Kaiser;Beryllium and tungsten species can form by plasma-induced erosion of the walls of a fusion reactor. Accurate and fast evaluation of energies and geometries of Be/W/H compounds is needed for direct molecular dynamics of the plasma-wall interface or for generating training data for potential energy surfaces. Density functional calculations can serve this purpose but within the magnitude of suggested functionals no single one is the obvious choice. We investigate the performance of compact linear combinations of density functionals on some Be/W/H compounds by statistical machine learning.Equilibrium geometries and atomization energies of the neutral molecules Ben, BenHm, Wn, WnBem, and WnHm with m+n≤4 from 16 density functionals were compared with their counterparts from coupled cluster calculations. A statistical learning method was used to find combinations of these functionals that can accurately reproduce the results of the much more costly coupled cluster method. Linear models of two or three functionals predict the coupled cluster data quite well with an accuracy of 98.2% and 99.7%, respectively, much better than any of the functionals alone. This simple procedure is, for example, useful for the calculation of species concentrations in reaction networks of molecules close to plasma facing components in a fusion device. Accurate molecular energies are crucial for determining the species concentrations which depend exponentially on their differences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.101026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.101026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Denmark, France, France, SwitzerlandPublisher:Wiley Hannes Gaisberger; Tobias Fremout; Chris J. Kettle; Barbara Vinceti; Della Kemalasari; Tania Kanchanarak; Evert Thomas; Josep M. Serra‐Diaz; Jens‐Christian Svenning; Ferry Slik; Wichan Eiadthong; Kandasamy Palanisamy; Gudasalamani Ravikanth; Vilma Bodos; Julia Sang; Rekha R. Warrier; Alison K. S. Wee; Christian Elloran; Lawrence Tolentino Ramos; Matieu Henry; Md. Akhter Hossain; Ida Theilade; Simon Laegaard; K. M. A. Bandara; Dimantha Panduka Weerasinghe; Suchitra Changtragoon; Vivi Yuskianti; Peter Wilkie; Nguyen Hoang Nghia; Stephen Elliott; Greuk Pakkad; Pimonrat Tiansawat; Colin Maycock; Chaloun Bounithiphonh; Rozi Mohamed; M. Nazre; Baktiar Nur Siddiqui; Soon‐Leong Lee; Chai‐Ting Lee; Nurul Farhanah Zakaria; Ida Hartvig; Lutz Lehmann; Dzaeman B. Dzulkifli David; Jens‐Peter Barnekow Lillesø; Chhang Phourin; Zheng Yongqi; Huang Ping; Hugo A. Volkaert; Lars Graudal; Arief Hamidi; So Thea; Sineath Sreng; David Boshier; Enrique Tolentino; Wickneswari Ratnam; Mu Mu Aung; Michael Galante; Siti Fatimah Md Isa; Nguyen Quoc Dung; Tran Thi Hoa; Tran Chan Le; Md. Danesh Miah; Abdul Lateef Mohd Zuhry; Deepani Alawathugoda; Amelia Azman; Gamini Pushpakumara; Nur Sumedi; Iskandar Z. Siregar; Hong Kyung Nak; Jean Linsky; Megan Barstow; Lian Pin Koh; Riina Jalonen;AbstractTree diversity in Asia's tropical and subtropical forests is central to nature‐based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region‐wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species‐specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/118017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/118017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, South Africa, Australia, New ZealandPublisher:Elsevier BV Svetlana V. Feigin; David O. Wiebers; George Lueddeke; Serge Morand; Kelley Lee; Andrew Knight; Michael Brainin; Valery L. Feigin; Amanda Whitfort; James Marcum; Todd K. Shackelford; Lee F. Skerratt; Andrea S. Winkler;Humanity is now facing what may be the biggest challenge to its existence: irreversible climate change brought about by human activity. Our planet is in a state of emergency, and we only have a short window of time (7-8 years) to enact meaningful change. The goal of this systematic literature review is to summarize the peer-reviewed literature on proposed solutions to climate change in the last 20 years (2002-2022), and to propose a framework for a unified approach to solving this climate change crisis. Solutions reviewed include a transition toward use of renewable energy resources, reduced energy consumption, rethinking the global transport sector, and nature-based solutions. This review highlights one of the most important but overlooked pieces in the puzzle of solving the climate change problem - the gradual shift to a plant-based diet and global phaseout of factory (industrialized animal) farming, the most damaging and prolific form of animal agriculture. The gradual global phaseout of industrialized animal farming can be achieved by increasingly replacing animal meat and other animal products with plant-based products, ending government subsidies for animal-based meat, dairy, and eggs, and initiating taxes on such products. Failure to act will ultimately result in a scenario of irreversible climate change with widespread famine and disease, global devastation, climate refugees, and warfare. We therefore suggest an "All Life" approach, invoking the interconnectedness of all life forms on our planet. The logistics for achieving this include a global standardization of Environmental, Social, and Governance (ESG) or similar measures and the introduction of a regulatory body for verification of such measures. These approaches will help deliver environmental and sustainability benefits for our planet far beyond an immediate reduction in global warming.
Auckland University ... arrow_drop_down Auckland University of Technology: Tuwhera Open ResearchArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427336Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/93405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e20544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Auckland University ... arrow_drop_down Auckland University of Technology: Tuwhera Open ResearchArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427336Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/93405Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e20544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:American Geophysical Union (AGU) Naota Hanasaki; Taher Kahil; Stephanie Eisner; Martina Flörke; Simon J. Langan; Yusuke Satoh; Luzma Fabiola Nava; Sylvia Tramberend; Edward Byers; Piotr Magnuszewski; Günther Fischer; Peter Burek; Peter Greve; William J. Cosgrove; Yoshihide Wada; Yoshihide Wada;doi: 10.1002/2016ef000503
AbstractThis paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state‐of‐the‐art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30–40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia‐Pacific region, with a population of 1.6–2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin‐level analysis of the hydro‐economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid‐21st century.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu