Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,646 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • AU
  • BG
  • Monash University

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw K. Rhino;
    K. Rhino
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    K. Rhino in OpenAIRE
    orcid J. Iyer;
    J. Iyer
    ORCID
    Harvested from ORCID Public Data File

    J. Iyer in OpenAIRE
    S.D.C. Walsh; orcid S.A. Carroll;
    S.A. Carroll
    ORCID
    Harvested from ORCID Public Data File

    S.A. Carroll in OpenAIRE
    +1 Authors

    Abstract Fractures along interfaces between host rock and wellbore cement have long been identified as potential CO2 leakage pathways from subsurface CO2 storage sites. As a consequence, cement alteration due to exposure to CO2 has been studied extensively to assess wellbore integrity. Previous studies have focused on the changes to either chemical or mechanical properties of cement upon exposure to CO2-enriched brine, but not on the effects of loading conditions. This paper aims to correct this deficit by considering the combined effects of the fracture pathway and changing effective stress on chemical and mechanical degradation at conditions relevant to geologic carbon storage. Flow-through experiments on fractured cores composed of cement and tight sandstone caprock halves were conducted to study the alteration of cement due to exposure to CO2-enriched brine at 3, 7, 9, and 12 MPa effective stress. We characterized relevant reactions via solution chemistry; fracture permeability via changes to differential pressure; mechanical changes via micro-hardness testing, and pore structure changes via x-ray tomography. This study showed that the nature and the rates of the chemical reactions between cement and CO2 were not affected by the effective stress. The differences in the permeability responses of the fractures were attributed to interactions among the geometry of the flow path, the porosity increase of the reacted cement, and the mechanical deformation of reacted asperities. The suite of observed chemical reactions contributed to change in cement mechanical properties. Compared to the unreacted cement, the average hardness of the amorphous silica and depleted layers was decreased while the hardness of the calcite layer was increased. Tomographic imaging showed that preferential flow paths formed in some of the core-flood experiments, which had a significant impact on the permeability response of the fractured samples. We interpreted the observed permeability responses in terms of competition between dissolution of cement phases (leading to enhanced permeability) and mechanical deformation of reacted regions (leading to reduced permeability).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Greenhouse Gas Control
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Greenhouse Gas Control
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Greenhouse Gas Control
      Article . 2021 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Greenhouse Gas Control
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      addClaim
  • Authors: Shu Fan; orcid Rob J. Hyndman;
    Rob J. Hyndman
    ORCID
    Harvested from ORCID Public Data File

    Rob J. Hyndman in OpenAIRE

    Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.

    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Varghese, Blesson M.;
    Varghese, Blesson M.
    ORCID
    Harvested from ORCID Public Data File

    Varghese, Blesson M. in OpenAIRE
    orcid Barnett, Adrian G.;
    Barnett, Adrian G.
    ORCID
    Harvested from ORCID Public Data File

    Barnett, Adrian G. in OpenAIRE
    Hansen, Alana L.; orcid Bi, Peng;
    Bi, Peng
    ORCID
    Harvested from ORCID Public Data File

    Bi, Peng in OpenAIRE
    +7 Authors

    Heatwaves have potential health and safety implications for many workers, and heatwaves are predicted to increase in frequency and intensity with climate change. There is currently a lack of comparative evidence for the effects of heatwaves on workers' health and safety in different climates (sub-tropical and temperate). This study examined the relationship between heatwave severity (as defined by the Excess Heat Factor) and workers' compensation claims, to define impacts and identify workers at higher risk.Workers' compensation claims data from Australian cities with temperate (Melbourne and Perth) and subtropical (Brisbane) climates for the years 2006-2016 were analysed in relation to heatwave severity categories (low and moderate/high severity) using time-stratified case-crossover models.Consistent impacts of heatwaves were observed in each city with either a protective or null effect during heatwaves of low-intensity while claims increased during moderate/high-severity heatwaves compared with non-heatwave days. The highest effect during moderate/high-severity heatwaves was in Brisbane (RR 1.45, 95% CI: 1.42-1.48). Vulnerable worker subgroups identified across the three cities included: males, workers aged under 34 years, apprentice/trainee workers, labour hire workers, those employed in medium and heavy strength occupations, and workers from outdoor and indoor industrial sectors.These findings show that work-related injuries and illnesses increase during moderate/high-severity heatwaves in both sub-tropical and temperate climates. Heatwave forecasts should signal the need for heightened heat awareness and preventive measures to minimise the risks to workers.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Exposure ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Exposure Science & Environmental Epidemiology
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Moss, PT; Kershaw, AP;

    A detailed pollen record from the Ocean Drilling Program Site 820 core, located on the upper part of the continental slope off the coast of northeast Queensland, was constructed to compare with the existing pollen record from Lynch's Crater on the adjacent Atherton Tableland and allow the production of a regional picture of vegetation and environmental change through the last glacial cycle. Some broad similarities in patterns of vegetation change are revealed, despite the differences between sites and their pollen catchments, which can be related largely to global climate and sea-level changes. The original estimated time scale of the Lynch's Crater record is largely confirmed from comparison with the more thoroughly dated ODP record. Conversely, the Lynch's Crater pollen record has assisted in dating problematic parts of the ODP record. In contrast to Lynch's Crater, which reveals a sharp and sustained reduction in drier araucarian forest around 38,000 yrs BP, considered to have been the result of burning by Aboriginal people, the ODP record indicates, most likely, a stepwise reduction, dating from 140,000 yrs BP or beyond. The earliest reduction shows lack of a clear connection between Araucaria decline and increased burning and suggests that people may not have been involved at this stage. However, a further decline in araucarian forest, possibly around 45,000 yrs BP, which has a more substantial environmental impact and is not related to a time of major climate change, is likely, at least partially, the result of human burning. The suggestion, from the ODP core oxygen isotope record, of a regional sea-surface temperature increase of around 4 degrees C between about 400,000 and 250,000 yrs BP, may have had some influence on the overall decline in Araucaria and its replacement by sclerophyll vegetation. (C) 2000 Elsevier Science B.V. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Palaeogeography Pala...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Palaeogeography Palaeoclimatology Palaeoecology
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    121
    citations121
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Licheng Sun;
    Licheng Sun
    ORCID
    Harvested from ORCID Public Data File

    Licheng Sun in OpenAIRE
    Licheng Sun; orcid Mingkui Wang;
    Mingkui Wang
    ORCID
    Harvested from ORCID Public Data File

    Mingkui Wang in OpenAIRE
    Wenjun Zhang; +7 Authors

    AbstractHerein, we present ultrasmall delafossite‐type Mg‐doped CuCrO2 nanocrystals prepared by using hydrothermal synthesis and their first application as photocathodes in efficient p‐type dye‐sensitized solar cells. The short‐circuit current density (Jsc) is notably increased by approximately 27 % owing to the decreased crystallite size and the enhanced optical transmittance associated with Mg doping of the CuCrO2 nanocrystalline sample. An open‐circuit voltage (Voc) of 201 mV, Jsc of 1.51 mA cm−2, fill factor of 0.449, and overall photoconversion efficiency of 0.132 % have been achieved with the CuCr0.9Mg0.1O2 dye photocathode sensitized with the P1 dye under optimized conditions. This efficiency is nearly three times higher than that of the NiO‐based reference device, which is attributed to the largely improved Voc and Jsc. The augmentation of Voc and Jsc can be attributed to the lower valance band position and the faster hole diffusion coefficient of CuCr0.9Mg0.1O2 compared to those of the NiO reference, respectively, which leads to a higher hole collection efficiency.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemSusChem
    Article . 2013 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ChemSusChem
    Article . 2014
    addClaim
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemSusChem
      Article . 2013 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ChemSusChem
      Article . 2014
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Vendela Åslund;
    Vendela Åslund
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Vendela Åslund in OpenAIRE
    orcid Fredrik Pettersson-Löfstedt;
    Fredrik Pettersson-Löfstedt
    ORCID
    Harvested from ORCID Public Data File

    Fredrik Pettersson-Löfstedt in OpenAIRE

    Public transport systems in different parts of the world are currently undergoing a change characterised by the introduction of battery-powered electric buses in everyday operations. The introduction of electric buses brings new challenges such as high investment costs and technology concerns, as well as new forms of collaboration between both established and new actors. The aim of this paper is to disentangle different actors’ rationale for the transition, identifying underlying interests in and expectations of the electric bus system. With a focus on the Swedish context, we found that whilst common rationales exist, these are influenced by collective expectations and different underlying interests for the actor groups. We found that the interests of the actors are grounded in expectations of future developments, but also relate to the experience that the transition is occurring faster than previously anticipated. The results show a high degree of consensus regarding the transition to electric buses, although the actors have varying resources and action spaces with which to influence the transition, which is largely determined by the institutional and local context.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research in Transpor...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research in Transportation Economics
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sydney eScholarship
    Conference object . 2023
    addClaim
    Access Routes
    Green
    hybrid
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research in Transpor...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research in Transportation Economics
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sydney eScholarship
      Conference object . 2023
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John R. May; David J Brennan;

    Electricity generation systems have traditionally been evaluated using only a limited number of economic or environmental indicators, for example capital investment, generation cost or carbon dioxide emissions. Moreover, the evaluations have generally been restricted to performance within the geographic boundary of the power station. This paper reports a sustainability assessment of power generation from Australian fossil fuels, notably black coal, brown coal and natural gas. A range of key sustainability indicators incorporating environmental, economic and social performance are included. The system boundary incorporates fuel extraction, fuel transport to the power station, generation of power, and transmission of electricity to the point of use. Most commonly employed existing technologies and some promising advanced technologies for power generation are considered. The cases of exporting Australian LNG and black coal to Japan for power generation in that country have also been considered. No one fuel or technology system was superior or inferior for every indicator. However the following generalizations can be made: Natural gas combined cycle systems have advantages for the majority of environmental and economic indicators, brown coal has an advantage in terms of value added, and black coal has relatively poor safety performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Safety and E...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Process Safety and Environmental Protection
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Safety and E...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Process Safety and Environmental Protection
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Tanuj Joshi;
    Tanuj Joshi
    ORCID
    Harvested from ORCID Public Data File

    Tanuj Joshi in OpenAIRE
    Om Parkash; orcid Ralph Kristoffer B. Gallegos;
    Ralph Kristoffer B. Gallegos
    ORCID
    Harvested from ORCID Public Data File

    Ralph Kristoffer B. Gallegos in OpenAIRE
    Gopal Krishan;

    Slurry transportation is an essential process in numerous industrial applications, widely studied for its efficiency in material conveyance. Despite substantial research, the impact of pipe wall roughness on critical metrics such as pressure drop, specific energy consumption (SEC), and the Nusselt number remains relatively underexplored. This study provides a detailed analysis using a three-dimensional computational model of a slurry pipeline, with a 0.0549 m diameter and 3.8 m length. The model employs an Eulerian multiphase approach coupled with the RNG k-ε turbulence model, assessing slurry concentrations Cw = 40–60% (by weight). Simulations were conducted at flow velocities Vm = 1–5 m/s, with pipe roughness (Rh) ranging between 10 and 50 µm. Computational findings indicate that both pressure drop and SEC increase proportionally with roughness height, Vm, and Cw. Interestingly, the Nusselt number appears unaffected by roughness height, although it rises corresponds to Vm, and Cw. These insights offer a deeper understanding of slurry pipeline dynamics, informing strategies to enhance operational efficiency and performance across various industrial contexts.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computationarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Computation
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Computation
    Article . 2025
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computationarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Computation
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Computation
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Qiao Lyu;
    Qiao Lyu
    ORCID
    Harvested from ORCID Public Data File

    Qiao Lyu in OpenAIRE
    orcid Jingqiang Tan;
    Jingqiang Tan
    ORCID
    Harvested from ORCID Public Data File

    Jingqiang Tan in OpenAIRE
    Jeffrey M. Dick; Qi Liu; +4 Authors

    A better understanding of the stress–strain behaviors of shale samples after shale-CO2 or shale-water–CO2 interactions is of great importance to CO2 enhanced shale gas exploitation and CO2 sequestrating in shale reservoirs. In this study, a constitutive model that combines with the modified Duncan–Chang model and Weibull distribution-based model is applied to investigate the stress–strain characteristics of low-clay shale samples treated by sub-/super-critical CO2 and sub-/super-critical CO2 + water for different times (10 days, 20 days, and 30 days). The results show that the model could describe well the crack closure stage, the elastic stage, and the inelastic stage of shale samples. The axial strain at the connection point between the two models varies from 28.51 to 43.36% of the axial strain at the failure point. Shale-CO2 or shale-water–CO2 interactions make shale samples more ductile at the crack closure stage, which can be depicted as the increase of initial elastic modulus during the imbibition process. The brittleness index values (BI) which are calculated based on the combined constitutive model increase with increasing soaking time for shale samples treated by sub-/super-critical CO2, and decrease with increasing soaking time for shale samples treated by sub-/super-critical CO2 + water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rock Mechanics and R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Rock Mechanics and Rock Engineering
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rock Mechanics and R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Rock Mechanics and Rock Engineering
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrew Milner; James Burgann Milner;

    As developed by Immanuel Wallerstein and various co-thinkers, world-systems analysis is essentially an approach to economic history and historical sociology that has been largely indifferent to literary studies. This indifference is perhaps surprising given that the Annales school, which clearly influenced Wallerstein’s work, produced a foundational account of the emergence of modern western literature in Lucien Febvre and Henri-Jean Martin’s L’apparition du livre (1958). More recently, literary scholars have attempted to apply this kind of analysis directly to their own field. The best-known instances are probably Pascale Casanova’s La republique mondiale des lettres (1999), Franco Moretti’s Distant Reading (2013) and the Warwick Research Collective’s Combined and Uneven Development (2015). More recently still, Andrew Milner in Australia and Jerry Määttä in Sweden have sought to apply “distant reading” more specifically to the genre of science fiction. Milner’s model of the “global SF field” identifies an original Anglo-French core, supplemented by more recent American and Japanese cores, longstanding Russian, German, Polish and Czech semi-peripheries, an emergent Chinese semi-periphery, and a periphery comprising the rest of the world. This essay attempts to apply that model to what Adam Trexler has termed “Anthropocene fictions” and Daniel Bloom “cli-fi”, which we treat here as a significant sub-genre of contemporary science fiction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of World-Sys...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of World-Systems Research
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of World-Systems Research
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of World-Systems Research
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of World-Sys...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of World-Systems Research
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of World-Systems Research
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of World-Systems Research
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph