Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemSusChem
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
ChemSusChem
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced Performance of p‐Type Dye‐Sensitized Solar Cells Based on Ultrasmall Mg‐Doped CuCrO2 Nanocrystals

Authors: Licheng Sun; Licheng Sun; Mingkui Wang; Wenjun Zhang; Zhen Xu; Jin Cui; Wei Chen; +4 Authors

Enhanced Performance of p‐Type Dye‐Sensitized Solar Cells Based on Ultrasmall Mg‐Doped CuCrO2 Nanocrystals

Abstract

AbstractHerein, we present ultrasmall delafossite‐type Mg‐doped CuCrO2 nanocrystals prepared by using hydrothermal synthesis and their first application as photocathodes in efficient p‐type dye‐sensitized solar cells. The short‐circuit current density (Jsc) is notably increased by approximately 27 % owing to the decreased crystallite size and the enhanced optical transmittance associated with Mg doping of the CuCrO2 nanocrystalline sample. An open‐circuit voltage (Voc) of 201 mV, Jsc of 1.51 mA cm−2, fill factor of 0.449, and overall photoconversion efficiency of 0.132 % have been achieved with the CuCr0.9Mg0.1O2 dye photocathode sensitized with the P1 dye under optimized conditions. This efficiency is nearly three times higher than that of the NiO‐based reference device, which is attributed to the largely improved Voc and Jsc. The augmentation of Voc and Jsc can be attributed to the lower valance band position and the faster hole diffusion coefficient of CuCr0.9Mg0.1O2 compared to those of the NiO reference, respectively, which leads to a higher hole collection efficiency.

Related Organizations
Keywords

Electric Power Supplies, Chromium Compounds, Solar Energy, Nanoparticles, Magnesium, Oxides, Coloring Agents, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research