- home
- Advanced Search
- Energy Research
- Open Access
- AU
- CA
- Energy Research
- Open Access
- AU
- CA
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Edmond Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; Omeja, Patrick; Valtonen, Anu; Chapman, Colin A.;doi: 10.17617/3.6j4za0
Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 AustraliaPublisher:Mendeley Authors: Castrejón Campos, O; Aye, L; Hui, KF;handle: 11343/258762
This dataset includes input data to estimate learning-by-doing (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States. Using different learning curve approaches the simulated technology cost developments are also presented. Coefficient of determination (R square) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technology costs.
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Authors: Diana Stralberg;Velocity-based macrorefugia for boreal passerine birds Citation for dataset -------------------- Stralberg, D. Velocity-based macrorefugia for boreal passerine birds. Boreal Avian Modelling Project. Edmonton, Alberta, Canada. DOI: 10.5281/zenodo.1299880 https://doi.org/10.5281/zenodo.1299880 Data layers ----------------- Refugia layers represent mid-century (2041-2070) and end-of-century (2071-2100) conditions for the SRES A2 emissions scenario at 4-km resolution ----------------- Combined index for 53 species (clipped to Brandt's boreal region): _refbrandt53_YYYYZZZZ Species-specific indices: XXXX_refYYYY where: YYYY = Time period (2050s or 2080s) ZZZZ = weighted or unweighted XXXX = Songbird Species Code (see Birdlookup.csv) Percentile values of refugia indices for mapping purposes 0.01 0.1 0.25 0.5 0.75 0.9 0.99 "2050s, weighted " 0.032 0.243 0.317 0.399 0.484 0.589 0.779 "2080s, weighted" 0.002 0.09 0.137 0.2 0.281 0.386 0.675 "2050s, unweighted" 0.006 0.108 0.159 0.218 0.292 0.358 0.421 "2080s, unweighted" 0.001 0.055 0.083 0.123 0.185 0.241 0.297 Projection information ------------------- """+proj=lcc +lat_1=49 +lat_2=77 +lat_0=0 +lon_0=-95 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs""" ------------------- Projection LAMBERT Spheroid GRS80 Units METERS Zunits NO Xshift 0.0 Yshift 0.0 Parameters 49 0 0.0 /* 1st standard parallel 77 0 0.0 /* 2nd standard parallel -95 0 0.0 /* central meridian 0 0 0.0 /* latitude of projection's origin 0.0 /* false easting (meters) 0.0 /* false northing (meters)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1299879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 485visibility views 485 download downloads 76 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1299879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Stolar, Jessica; Stralberg, Diana; Naujokaitis-Lewis, Ilona; Nielsen, Scott E.; Kehm, Gregory;Climate-informed conservation priorities in British Columbia (Version 1.0) Territorial acknowledgement: We respectfully acknowledge that we live and work across diverse unceded territories and treaty lands and pay our respects to the First Nations, Inuit and Métis ancestors of these places. We honour our connections to these lands and waters and reaffirm our relationships with one another. Suggested citation: Stolar, J., D. Stralberg, I. Naujokaitis-Lewis, S.E. Nielsen, and G. Kehm. 2023. Spatial priorities for climate-change refugia and connectivity for British Columbia (Version 1.0). Place of publication: University of Alberta, Edmonton, Canada. doi: 10.5281/zenodo.8333303 Corresponding author: stolar@ualberta.ca Summary: The purpose of this project is to identify spatial locations of (a) vulnerabilities within British Columbia’s current network of protected areas and (b) priorities for conservation and management of natural landscapes within British Columbia under a range of future climate-change scenarios. This involved adaptation and implementation of existing continental- and provincial-scale frameworks for identifying areas that have potential to serve as refugia from climate change or corridors for species migration. Outcomes of this work include the provision of practical guidance for protected areas network design and vulnerabilities identification under climate change, with application to other regions and jurisdictions. Project results, in the form of multiple spatial prioritization scenarios, may be used to evaluate the resilience of the existing protected area network and other conservation designations to better understand the risks to British Columbia’s biodiversity in our changing climate. Description: These raster layers represent different scenarios of Zonation rankings of conservation priorities for climate resilience and connectivity between current and 2080s conditions for a provincial-scale analysis. Input conservation features included metrics of macrorefugia (forward and backward climate velocity (km/year), overlapping future and current habitat suitability for ~900 rare species in BC), microrefugia (presence of old growth ecosystems, drought refugia, glaciers/cool slopes/wetlands, and geodiversity), and connectivity. Please see details in the accompanying report. File nomenclature: .zip folder (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.zip): Contains the files listed below. Macrorefugia (2080s_macrorefugia.tif): Scenarios for each taxonomic group (equal weightings for all species) (Core-area Zonation Function) Climate-type velocity + species scenarios from above (Core-area Zonation; equal weightings) Microrefugia (microrefugia.tif): Scenario with old growth forest habitat, landscape geodiversity, wetlands/cool slopes/glaciers, drought refugia (Core-area Zonation; equal weightings) Overall scenario (2080s_macro_micro_connectivity.tif): Inputs from above (with equal weightings) + connectivity metrics (each weighted at 0.1) (Additive Benefit Function Zonation) Conservation priorities (Conservation_priorities_2080s.tif): Overall scenario from above extracted to regions of low human footprint. Restoration priorities (Restoration_priorities_2080s.tif): Overall scenario from above extracted to regions of high human footprint. Accompanying report (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.pdf): Documentation of rationale, methods and interpretation. READ_ME file (READ_ME_PLEASE.txt): Metadata. Legend interpretation: Ranked Zonation priorities increase from 0 (lowest) to 1 (highest). Raster information: Columns and Rows: 1597, 1368 Number of Bands: 1 Cell Size (X, Y): 1000, 1000 Format: TIFF Pixel Type: floating point Compression: LZW Spatial reference: XY Coordinate System: NAD_1983_Albers Linear Unit: Meter (1.000000) Angular Unit: Degree (0.0174532925199433) false_easting: 1000000 false_northing: 0 central_meridian: -126 standard_parallel_1: 50 standard_parallel_2: 58.5 latitude_of_origin: 45 Datum: D_North_American_1983 Extent: West -139.061502 East -110.430823 North 60.605550 South 47.680823 Disclaimer: The University of Alberta (UofA) is furnishing this deliverable "as is". UofA does not provide any warranty of the contents of the deliverable whatsoever, whether express, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the deliverable will be error-free. Funding: We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation. We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8333303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8333303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Aug 2022Publisher:Dryad Teo, Hoong Chen; Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; Cheng, Yanyan; Luo, Xiangzhong; Lechner, Alex; Ashfold, Matthew; Lamba, Aakash; Sreekar, Rachakonda; Zheng, Qiming; Chen, Anping; Koh, Lian Pin;Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modelling for the period 2041–2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < 0.05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience non-significant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation. This dataset contains raw data outputs for Teo et al. (2022), Global Change Biology. Please see the published paper for further details on methods. For enquiries, please contact the corresponding authors: hcteo [at] u.nus.edu or lianpinkoh [at] nus.edu.sg. Shapefiles can be opened with any GIS program such as ArcMap or QGIS. CSV files can be opened with any spreadsheet program such as Microsoft Excel or OpenOffice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Anhaus, Philipp; Schiller, Martin; Planat, Noémie; Katlein, Christian; Nicolaus, Marcel;Transmitted solar irradiance was measured using an ACC (Advanced-Cosine-Collector) RAMSES hyper-spectral radiometer (TriOS) mounted on the ROV during the ARTofMELT2023 expedition in May and June 2023 and normalized by the incident solar irradiance as measured using an ACC RAMSES hyper-spectral radiometer (TriOS) installed on-board the ship. All times are given in Universal Coordinated Time (UTC).
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.964482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.964482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 27 Mar 2023Publisher:Dryad Bouderbala, Ilhem; Labadie, Guillemette; Béland, Jean-Michel; Boulanger, Yan; Hébert, Christian; Desrosiers, Patrick; Allard, Antoine; Fortin, Daniel;Aim Despite an increasing number of studies highlighting the impacts of climate change on boreal species, the main factors that will drive changes in species assemblages remain ambiguous. We study how species community composition would change following anthropogenic and natural disturbances. We determine the main drivers of assemblage dissimilarity for bird and beetle communities. Location Côte-Nord, Québec, Canada. Methods We quantify two climate-induced pathways based on direct and indirect effects on species occurrence under different harvest management scenarios. The direct climate effects illustrate the impact of climate variables while the indirect effects are reflected through habitat-based climate change. We develop empirical models to predict the distribution of more than 100 species over the next century. We analyze the regional and the latitudinal species assemblage dissimilarity by decomposing it into 'balanced variation in species occupancy and occurrence' and 'occupancy and occurrence gradient'. Results Both pathways increased dissimilarity in species assemblage. At the regional scale, both effects have an impact on decreasing the number of winning species. Yet, responses are much larger in magnitude under mixed climate effects (a mixture of direct and indirect effects). Regional assemblage dissimilarity reached 0.77 and 0.69 under mixed effects versus 0.09 and 0.10 under indirect effects for beetles and birds, respectively, between RCP8.5 and baseline climate scenarios when considering harvesting. Latitudinally, assemblage dissimilarity increased following the climate conditions pattern. Main conclusions The two pathways are complementary and alter biodiversity, mainly caused by species turnover. Yet, responses are much larger in magnitude under mixed climate effects. Therefore, the inclusion of climatic variables considers aspects other than just those related to forest landscapes, such as life cycles of animal species. Moreover, we expect differences in occupancy between the two studied taxa. This could indicate the potential range of change in boreal species concerning novel environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ghx3ffbsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ghx3ffbsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 22 Mar 2024Publisher:Dryad Pelle, Tyler; Greenbaum, Jamin; Ehrenfeucht, Shivani; Dow, Christine; McCormack, Felicity;# Dataset: Subglacial freshwater driven speedup of East Antarctic outlet glacier retreat [https://doi.org/10.5061/dryad.1vhhmgr0b](https://doi.org/10.5061/dryad.1vhhmgr0b) Journal: Journal of Geophysical Research: Earth Surface Principle Investigator: * Tyler Pelle, Scripps Institution of Oceanography, University of California San Diego, [tpelle@ucsd.edu](mailto:tpelle@ucsd.edu) Co-Authors: * Dr. Jamin Greenbaum, Scripps Institution of Oceanography, University of California San Diego * Dr. Shivani Ehrenfeucht, Department of Geography and Environmental Management, University of Waterloo * Prof. Christine Dow, Department of Geography and Environmental Management, University of Waterloo * Dr. Felicity S. McCormack, Securing Antarctica's Environmental Future, School of Earth, Atmosphere, & Environment, Monash University Created on October 4, 2023 ## Description of the data and file structure ### File description: 1. runme.m - MATLAB script used to run coupled ISSM-GlaDS SSP5-8.5_{F,M} simulation - includes melt rate parameterization. 2. ssp585.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5 simulation. 3. ssp585_F.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F} simulation. 4. ssp585_M.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{M} simulation. 5. ssp585_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F,M} simulation. 6. ssp126.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6 simulation. 7. ssp126_F.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F} simulation. 8. ssp126_M.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{M} simulation. 9. ssp126_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F,M} simulation. 10. ssp585_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 11. ssp585_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 12. ssp585_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 13. ssp585_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 14. ssp585_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 15. ssp585_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 16. ssp126_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 17. ssp126_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 18. ssp126_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 19. ssp126_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 20. ssp126_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 21. ssp126_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 22. TotBasin.exp - Polygon that contains Totten Glacier over which Totten's ocean temperature is applied. 23. MuisBasin.exp - Polygon that contains Moscow University Glacier over which Totten's ocean temperature is applied. 24. VandBasin.exp - Polygon that contains Vanderford Glacier over which Totten's ocean temperature is applied. ### File specific information: **ASB_IceHydroModel.mat**: All data associated with the ice sheet and subglacial hydrology model initial state is held in ASB_IceHydroModel.mat, which contains a MATLAB ‘model’ object (for more information, see [https://issm.jpl.nasa.gov/documentation/modelclass/](https://issm.jpl.nasa.gov/documentation/modelclass/). In MATLAB, the model can be loaded and displayed by running load(‘ASB_IceHydroModel.mat’), which will load in the model variable ‘md’. Of particular interest will be the following data contained in md: md.mesh (mesh information), md.geometry (initial ice sheet geometry, ice shelf geometry, and bed topography), md.hydrology (initial hydrology model fields), md.initialization (model initialization fields) and md.mask (ice mask and grounded ice mask). Note that all fields are defined on the mesh nodes, and one can plot a given field in MATLAB using the ISSM tool ‘plotmodel’ (e.g., plotmodel(md,'data',md.geometry.bed) will plot the model bed topography). For more information on plotting, please see [https://issm.jpl.nasa.gov/documentation/plotmatlab/](https://issm.jpl.nasa.gov/documentation/plotmatlab/). **Model output files (e.g. ssp585_FM.mat)**: Yearly ice sheet model results between 2017-2100 for all model simulations described in the paper. Fields appended with '*' are included in results with changing subglacial hydrology (ssp126_F, ssp126_M, ssp126_FM, ssp585_F, ssp585_M, ssp585_FM). Fields appended with '**' are included in results where ice shelf melt is enhanced by subglacial discharge (ssp126_M, ssp126_FM, ssp585_M, ssp585_FM). These files contain a MATLAB variable that is the same as the file name, which is a model object of size 1x83 that contains the following yearly variables: * \* Vel (velocity norm, m/yr) * \* Thickness (ice sheet thickness, m) * \* Surface (ice sheet surface elevation, m) * \* Base (ice sheet base elevation, m) * \* BasalforcingsFloatingiceMeltingRate (ice shelf basal melting rate field, m/yr) * \* MaskOceanLevelset (ground ice mask, grounded ice if > 0, grounding line position if = 0, floating ice if < 0) * \* IceVolume (total ice volume in the model domain, t) * \* IceVolumeAboveFloatation (total ice volume in the model domain that is above hydrostatic equilibrium, t) * \* TotalFloatingBmb (Total floating basal mass balance, Gt) * \* \\*ChannelDischarge\\_Node (GlaDS-computed channel discharge interpolated onto model node, m3/s) * \* \\*ChannelDiameter\\_Node (GlaDS-computed channel diameter interpolated onto model node, m) * \* \\*ChannelArea (GlaDS-computed channel area defined on model edges, m2) * \* \\*ChannelDischarge (GlaDS\\_computed channel discharge defined on model edges, m3/s) * \* \\*EffectivePressure (GlaDS-computed ice sheet effective pressure, Pa) * \* \\*HydraulicPotential (GlaDS computed hydraulic potential, - * \* \\*HydrologySheetThickness (GlaDS-computed after sheet thickness, m) * \* \\*GroundedIceMeltingRate (Grounded ice melting rate defined on all grounded nodes, m/yr) * \* \\*\\*melt\\_nodis (ice shelf basal melting rate computed when discharge is set to zero, m/yr) * \* \\*\\*zgl (grounding line height field, m) * \* \\*\\*glfw (grounding line fresh water flux field, m2/s) * \* \\*\\*chan\\_wid (Domain average subglacial discharge channel width, m) * \* \\*\\*maxdist (5L' length scale used in melt computation, m) * \* \\*\\*maxis (maximum discharge at each subglacial outflow location, m2/s) * \**\\*\\_T.mat**: Bi-weekly ocean temperature extracted from an East Antarctic configuration of the MITgcm (Pelle et al., 2021), where '\\*' ssp126 (low emission) or ssp585 (high emission). Ocean temperature was averaged adjacent to each target ice front in both depth and in the contours shown in figure 1b. * \**\\*\\_S.mat**: Same as above, but for salinity in units on the Practical Salinity Scale (PSU). * \***.exp**: Exp files that contain coordinates that outline a polygon for the drainage basins of each major glacier in this study (Vanderford Glacier contains the drainage basins for Adams, Bond, and Underwood Glaciers as well). Recent studies have revealed the presence of a complex freshwater system underlying the Aurora Subglacial Basin (ASB), a region of East Antarctica that contains ~7 m of global sea level potential in ice mainly grounded below sea level. Yet, the impact that subglacial freshwater has on driving the evolution of the dynamic outlet glaciers that drain this basin has yet to be tested in a coupled ice sheet-subglacial hydrology numerical modeling framework. Here, we project the evolution of the primary outlet glaciers draining the ASB (Moscow University Ice Shelf, Totten, Vanderford, and Adams Glaciers) in response to an evolving subglacial hydrology system and to ocean forcing through 2100, following low and high CMIP6 emission scenarios. By 2100, ice-hydrology feedbacks enhance the ASB’s 2100 sea level contribution by ~30% (7.50 mm to 9.80 mm) in high emission scenarios and accelerate retreat of Totten Glacier’s main ice stream by 25 years. Ice-hydrology feedbacks are particularly influential in the retreat of the Vanderford and Adams Glaciers, driving an additional 10 km of retreat in fully-coupled simulations relative to uncoupled simulations. Hydrology-driven ice shelf melt enhancements are the primary cause of domain-wide mass loss in low emission scenarios, but are secondary to ice sheet frictional feedbacks under high emission scenarios. The results presented here demonstrate that ice-subglacial hydrology interactions can significantly accelerate retreat of dynamic Antarctic glaciers and that future Antarctic sea level assessments that do not take these interactions into account might be severely underestimating Antarctic Ice Sheet mass loss. In this data publication, we present the model output and results associated with the following manuscript recently submitted to the Journal of Geophysical Research: Earth Surface: “Subglacial discharge accelerates ocean driven retreat of Aurora Subglacial Basin outlet glaciers over the 21st century”. We include yearly ice sheet model output between 2017-2100 for eight numerical ice-subglacial hydrology model runs. We also include the ice sheet and subglacial hydrology model initial states. In addition, we include all ocean forcing time-series (temperature and salinity for the low emission and high emission climate forcing scenarios for three glacial regions), which are used as input into the melt parameterization. Lastly, we include a MATLAB script that contains the code used to couple the ice-subglacial hydrology models as well as a "readme" file with further information on all data in this publication. Ice sheet model results: Direct results taken from the Ice-sheet and Sea-level System Model (ISSM, Larour et al. 2012) with no processing applied, provided yearly as *.mat files. Ice sheet and subglacial hydrology model initial states: Initial state of the ice sheet model (ice geometry, mesh information, inversion results, etc.) and subglacial hydrology model (steady-state water column thickness, effective pressure, channelized discharge, etc.) containing Aurora Subglacial Basin outlet glaciers with no processing applied, provided as a *.mat file. The contents of the *.mat file is a MATLAB variable of class "model", which is compatible with ISSM. Model coupling script: Documented MATLAB script ready to run with the provided data sets. Ocean temperature and salinity timeseries: Bottom ocean temperature (°C) and salinity (PSU) timeseries (January 1st, 2017 through December 31, 2099) extracted from an East Antarctic configuration of the ocean component of the MITgcm (Pelle et al., 2021). Temperature and salinity are provided bi-weekly and averged both in depth and along the ice fronts of Moscow University, Totten, and Vanderford Glaciers (see white dashed contour in figure 1b of the main manuscript text). Data are provided as *.mat files. Polygons that provide locaion to apply ocean temperature and salinity: Polygons provided as a list of x/y coordinates (meters) are provided in three *.exp files that cover the drainage basins of Moscow University, Totten, and Vanderford Glaciers (the polygon for Vanderford also includes the drainage basins of Adams, Bond, and Underwood Glaciers).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Mackallah, Chloe; Druken, Kelsey; Ridzwan, Syazwan Mohamed;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.C4MIP.CSIRO.ACCESS-ESM1-5' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Edmond Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; Omeja, Patrick; Valtonen, Anu; Chapman, Colin A.;doi: 10.17617/3.6j4za0
Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 AustraliaPublisher:Mendeley Authors: Castrejón Campos, O; Aye, L; Hui, KF;handle: 11343/258762
This dataset includes input data to estimate learning-by-doing (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States. Using different learning curve approaches the simulated technology cost developments are also presented. Coefficient of determination (R square) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technology costs.
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Authors: Diana Stralberg;Velocity-based macrorefugia for boreal passerine birds Citation for dataset -------------------- Stralberg, D. Velocity-based macrorefugia for boreal passerine birds. Boreal Avian Modelling Project. Edmonton, Alberta, Canada. DOI: 10.5281/zenodo.1299880 https://doi.org/10.5281/zenodo.1299880 Data layers ----------------- Refugia layers represent mid-century (2041-2070) and end-of-century (2071-2100) conditions for the SRES A2 emissions scenario at 4-km resolution ----------------- Combined index for 53 species (clipped to Brandt's boreal region): _refbrandt53_YYYYZZZZ Species-specific indices: XXXX_refYYYY where: YYYY = Time period (2050s or 2080s) ZZZZ = weighted or unweighted XXXX = Songbird Species Code (see Birdlookup.csv) Percentile values of refugia indices for mapping purposes 0.01 0.1 0.25 0.5 0.75 0.9 0.99 "2050s, weighted " 0.032 0.243 0.317 0.399 0.484 0.589 0.779 "2080s, weighted" 0.002 0.09 0.137 0.2 0.281 0.386 0.675 "2050s, unweighted" 0.006 0.108 0.159 0.218 0.292 0.358 0.421 "2080s, unweighted" 0.001 0.055 0.083 0.123 0.185 0.241 0.297 Projection information ------------------- """+proj=lcc +lat_1=49 +lat_2=77 +lat_0=0 +lon_0=-95 +x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs""" ------------------- Projection LAMBERT Spheroid GRS80 Units METERS Zunits NO Xshift 0.0 Yshift 0.0 Parameters 49 0 0.0 /* 1st standard parallel 77 0 0.0 /* 2nd standard parallel -95 0 0.0 /* central meridian 0 0 0.0 /* latitude of projection's origin 0.0 /* false easting (meters) 0.0 /* false northing (meters)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1299879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 485visibility views 485 download downloads 76 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1299879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Stolar, Jessica; Stralberg, Diana; Naujokaitis-Lewis, Ilona; Nielsen, Scott E.; Kehm, Gregory;Climate-informed conservation priorities in British Columbia (Version 1.0) Territorial acknowledgement: We respectfully acknowledge that we live and work across diverse unceded territories and treaty lands and pay our respects to the First Nations, Inuit and Métis ancestors of these places. We honour our connections to these lands and waters and reaffirm our relationships with one another. Suggested citation: Stolar, J., D. Stralberg, I. Naujokaitis-Lewis, S.E. Nielsen, and G. Kehm. 2023. Spatial priorities for climate-change refugia and connectivity for British Columbia (Version 1.0). Place of publication: University of Alberta, Edmonton, Canada. doi: 10.5281/zenodo.8333303 Corresponding author: stolar@ualberta.ca Summary: The purpose of this project is to identify spatial locations of (a) vulnerabilities within British Columbia’s current network of protected areas and (b) priorities for conservation and management of natural landscapes within British Columbia under a range of future climate-change scenarios. This involved adaptation and implementation of existing continental- and provincial-scale frameworks for identifying areas that have potential to serve as refugia from climate change or corridors for species migration. Outcomes of this work include the provision of practical guidance for protected areas network design and vulnerabilities identification under climate change, with application to other regions and jurisdictions. Project results, in the form of multiple spatial prioritization scenarios, may be used to evaluate the resilience of the existing protected area network and other conservation designations to better understand the risks to British Columbia’s biodiversity in our changing climate. Description: These raster layers represent different scenarios of Zonation rankings of conservation priorities for climate resilience and connectivity between current and 2080s conditions for a provincial-scale analysis. Input conservation features included metrics of macrorefugia (forward and backward climate velocity (km/year), overlapping future and current habitat suitability for ~900 rare species in BC), microrefugia (presence of old growth ecosystems, drought refugia, glaciers/cool slopes/wetlands, and geodiversity), and connectivity. Please see details in the accompanying report. File nomenclature: .zip folder (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.zip): Contains the files listed below. Macrorefugia (2080s_macrorefugia.tif): Scenarios for each taxonomic group (equal weightings for all species) (Core-area Zonation Function) Climate-type velocity + species scenarios from above (Core-area Zonation; equal weightings) Microrefugia (microrefugia.tif): Scenario with old growth forest habitat, landscape geodiversity, wetlands/cool slopes/glaciers, drought refugia (Core-area Zonation; equal weightings) Overall scenario (2080s_macro_micro_connectivity.tif): Inputs from above (with equal weightings) + connectivity metrics (each weighted at 0.1) (Additive Benefit Function Zonation) Conservation priorities (Conservation_priorities_2080s.tif): Overall scenario from above extracted to regions of low human footprint. Restoration priorities (Restoration_priorities_2080s.tif): Overall scenario from above extracted to regions of high human footprint. Accompanying report (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.pdf): Documentation of rationale, methods and interpretation. READ_ME file (READ_ME_PLEASE.txt): Metadata. Legend interpretation: Ranked Zonation priorities increase from 0 (lowest) to 1 (highest). Raster information: Columns and Rows: 1597, 1368 Number of Bands: 1 Cell Size (X, Y): 1000, 1000 Format: TIFF Pixel Type: floating point Compression: LZW Spatial reference: XY Coordinate System: NAD_1983_Albers Linear Unit: Meter (1.000000) Angular Unit: Degree (0.0174532925199433) false_easting: 1000000 false_northing: 0 central_meridian: -126 standard_parallel_1: 50 standard_parallel_2: 58.5 latitude_of_origin: 45 Datum: D_North_American_1983 Extent: West -139.061502 East -110.430823 North 60.605550 South 47.680823 Disclaimer: The University of Alberta (UofA) is furnishing this deliverable "as is". UofA does not provide any warranty of the contents of the deliverable whatsoever, whether express, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the deliverable will be error-free. Funding: We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation. We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8333303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8333303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Aug 2022Publisher:Dryad Teo, Hoong Chen; Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; Cheng, Yanyan; Luo, Xiangzhong; Lechner, Alex; Ashfold, Matthew; Lamba, Aakash; Sreekar, Rachakonda; Zheng, Qiming; Chen, Anping; Koh, Lian Pin;Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modelling for the period 2041–2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < 0.05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience non-significant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation. This dataset contains raw data outputs for Teo et al. (2022), Global Change Biology. Please see the published paper for further details on methods. For enquiries, please contact the corresponding authors: hcteo [at] u.nus.edu or lianpinkoh [at] nus.edu.sg. Shapefiles can be opened with any GIS program such as ArcMap or QGIS. CSV files can be opened with any spreadsheet program such as Microsoft Excel or OpenOffice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Anhaus, Philipp; Schiller, Martin; Planat, Noémie; Katlein, Christian; Nicolaus, Marcel;Transmitted solar irradiance was measured using an ACC (Advanced-Cosine-Collector) RAMSES hyper-spectral radiometer (TriOS) mounted on the ROV during the ARTofMELT2023 expedition in May and June 2023 and normalized by the incident solar irradiance as measured using an ACC RAMSES hyper-spectral radiometer (TriOS) installed on-board the ship. All times are given in Universal Coordinated Time (UTC).
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.964482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.964482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 27 Mar 2023Publisher:Dryad Bouderbala, Ilhem; Labadie, Guillemette; Béland, Jean-Michel; Boulanger, Yan; Hébert, Christian; Desrosiers, Patrick; Allard, Antoine; Fortin, Daniel;Aim Despite an increasing number of studies highlighting the impacts of climate change on boreal species, the main factors that will drive changes in species assemblages remain ambiguous. We study how species community composition would change following anthropogenic and natural disturbances. We determine the main drivers of assemblage dissimilarity for bird and beetle communities. Location Côte-Nord, Québec, Canada. Methods We quantify two climate-induced pathways based on direct and indirect effects on species occurrence under different harvest management scenarios. The direct climate effects illustrate the impact of climate variables while the indirect effects are reflected through habitat-based climate change. We develop empirical models to predict the distribution of more than 100 species over the next century. We analyze the regional and the latitudinal species assemblage dissimilarity by decomposing it into 'balanced variation in species occupancy and occurrence' and 'occupancy and occurrence gradient'. Results Both pathways increased dissimilarity in species assemblage. At the regional scale, both effects have an impact on decreasing the number of winning species. Yet, responses are much larger in magnitude under mixed climate effects (a mixture of direct and indirect effects). Regional assemblage dissimilarity reached 0.77 and 0.69 under mixed effects versus 0.09 and 0.10 under indirect effects for beetles and birds, respectively, between RCP8.5 and baseline climate scenarios when considering harvesting. Latitudinally, assemblage dissimilarity increased following the climate conditions pattern. Main conclusions The two pathways are complementary and alter biodiversity, mainly caused by species turnover. Yet, responses are much larger in magnitude under mixed climate effects. Therefore, the inclusion of climatic variables considers aspects other than just those related to forest landscapes, such as life cycles of animal species. Moreover, we expect differences in occupancy between the two studied taxa. This could indicate the potential range of change in boreal species concerning novel environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ghx3ffbsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ghx3ffbsb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 22 Mar 2024Publisher:Dryad Pelle, Tyler; Greenbaum, Jamin; Ehrenfeucht, Shivani; Dow, Christine; McCormack, Felicity;# Dataset: Subglacial freshwater driven speedup of East Antarctic outlet glacier retreat [https://doi.org/10.5061/dryad.1vhhmgr0b](https://doi.org/10.5061/dryad.1vhhmgr0b) Journal: Journal of Geophysical Research: Earth Surface Principle Investigator: * Tyler Pelle, Scripps Institution of Oceanography, University of California San Diego, [tpelle@ucsd.edu](mailto:tpelle@ucsd.edu) Co-Authors: * Dr. Jamin Greenbaum, Scripps Institution of Oceanography, University of California San Diego * Dr. Shivani Ehrenfeucht, Department of Geography and Environmental Management, University of Waterloo * Prof. Christine Dow, Department of Geography and Environmental Management, University of Waterloo * Dr. Felicity S. McCormack, Securing Antarctica's Environmental Future, School of Earth, Atmosphere, & Environment, Monash University Created on October 4, 2023 ## Description of the data and file structure ### File description: 1. runme.m - MATLAB script used to run coupled ISSM-GlaDS SSP5-8.5_{F,M} simulation - includes melt rate parameterization. 2. ssp585.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5 simulation. 3. ssp585_F.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F} simulation. 4. ssp585_M.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{M} simulation. 5. ssp585_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F,M} simulation. 6. ssp126.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6 simulation. 7. ssp126_F.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F} simulation. 8. ssp126_M.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{M} simulation. 9. ssp126_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F,M} simulation. 10. ssp585_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 11. ssp585_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 12. ssp585_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 13. ssp585_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 14. ssp585_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 15. ssp585_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 16. ssp126_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 17. ssp126_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 18. ssp126_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 19. ssp126_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 20. ssp126_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 21. ssp126_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 22. TotBasin.exp - Polygon that contains Totten Glacier over which Totten's ocean temperature is applied. 23. MuisBasin.exp - Polygon that contains Moscow University Glacier over which Totten's ocean temperature is applied. 24. VandBasin.exp - Polygon that contains Vanderford Glacier over which Totten's ocean temperature is applied. ### File specific information: **ASB_IceHydroModel.mat**: All data associated with the ice sheet and subglacial hydrology model initial state is held in ASB_IceHydroModel.mat, which contains a MATLAB ‘model’ object (for more information, see [https://issm.jpl.nasa.gov/documentation/modelclass/](https://issm.jpl.nasa.gov/documentation/modelclass/). In MATLAB, the model can be loaded and displayed by running load(‘ASB_IceHydroModel.mat’), which will load in the model variable ‘md’. Of particular interest will be the following data contained in md: md.mesh (mesh information), md.geometry (initial ice sheet geometry, ice shelf geometry, and bed topography), md.hydrology (initial hydrology model fields), md.initialization (model initialization fields) and md.mask (ice mask and grounded ice mask). Note that all fields are defined on the mesh nodes, and one can plot a given field in MATLAB using the ISSM tool ‘plotmodel’ (e.g., plotmodel(md,'data',md.geometry.bed) will plot the model bed topography). For more information on plotting, please see [https://issm.jpl.nasa.gov/documentation/plotmatlab/](https://issm.jpl.nasa.gov/documentation/plotmatlab/). **Model output files (e.g. ssp585_FM.mat)**: Yearly ice sheet model results between 2017-2100 for all model simulations described in the paper. Fields appended with '*' are included in results with changing subglacial hydrology (ssp126_F, ssp126_M, ssp126_FM, ssp585_F, ssp585_M, ssp585_FM). Fields appended with '**' are included in results where ice shelf melt is enhanced by subglacial discharge (ssp126_M, ssp126_FM, ssp585_M, ssp585_FM). These files contain a MATLAB variable that is the same as the file name, which is a model object of size 1x83 that contains the following yearly variables: * \* Vel (velocity norm, m/yr) * \* Thickness (ice sheet thickness, m) * \* Surface (ice sheet surface elevation, m) * \* Base (ice sheet base elevation, m) * \* BasalforcingsFloatingiceMeltingRate (ice shelf basal melting rate field, m/yr) * \* MaskOceanLevelset (ground ice mask, grounded ice if > 0, grounding line position if = 0, floating ice if < 0) * \* IceVolume (total ice volume in the model domain, t) * \* IceVolumeAboveFloatation (total ice volume in the model domain that is above hydrostatic equilibrium, t) * \* TotalFloatingBmb (Total floating basal mass balance, Gt) * \* \\*ChannelDischarge\\_Node (GlaDS-computed channel discharge interpolated onto model node, m3/s) * \* \\*ChannelDiameter\\_Node (GlaDS-computed channel diameter interpolated onto model node, m) * \* \\*ChannelArea (GlaDS-computed channel area defined on model edges, m2) * \* \\*ChannelDischarge (GlaDS\\_computed channel discharge defined on model edges, m3/s) * \* \\*EffectivePressure (GlaDS-computed ice sheet effective pressure, Pa) * \* \\*HydraulicPotential (GlaDS computed hydraulic potential, - * \* \\*HydrologySheetThickness (GlaDS-computed after sheet thickness, m) * \* \\*GroundedIceMeltingRate (Grounded ice melting rate defined on all grounded nodes, m/yr) * \* \\*\\*melt\\_nodis (ice shelf basal melting rate computed when discharge is set to zero, m/yr) * \* \\*\\*zgl (grounding line height field, m) * \* \\*\\*glfw (grounding line fresh water flux field, m2/s) * \* \\*\\*chan\\_wid (Domain average subglacial discharge channel width, m) * \* \\*\\*maxdist (5L' length scale used in melt computation, m) * \* \\*\\*maxis (maximum discharge at each subglacial outflow location, m2/s) * \**\\*\\_T.mat**: Bi-weekly ocean temperature extracted from an East Antarctic configuration of the MITgcm (Pelle et al., 2021), where '\\*' ssp126 (low emission) or ssp585 (high emission). Ocean temperature was averaged adjacent to each target ice front in both depth and in the contours shown in figure 1b. * \**\\*\\_S.mat**: Same as above, but for salinity in units on the Practical Salinity Scale (PSU). * \***.exp**: Exp files that contain coordinates that outline a polygon for the drainage basins of each major glacier in this study (Vanderford Glacier contains the drainage basins for Adams, Bond, and Underwood Glaciers as well). Recent studies have revealed the presence of a complex freshwater system underlying the Aurora Subglacial Basin (ASB), a region of East Antarctica that contains ~7 m of global sea level potential in ice mainly grounded below sea level. Yet, the impact that subglacial freshwater has on driving the evolution of the dynamic outlet glaciers that drain this basin has yet to be tested in a coupled ice sheet-subglacial hydrology numerical modeling framework. Here, we project the evolution of the primary outlet glaciers draining the ASB (Moscow University Ice Shelf, Totten, Vanderford, and Adams Glaciers) in response to an evolving subglacial hydrology system and to ocean forcing through 2100, following low and high CMIP6 emission scenarios. By 2100, ice-hydrology feedbacks enhance the ASB’s 2100 sea level contribution by ~30% (7.50 mm to 9.80 mm) in high emission scenarios and accelerate retreat of Totten Glacier’s main ice stream by 25 years. Ice-hydrology feedbacks are particularly influential in the retreat of the Vanderford and Adams Glaciers, driving an additional 10 km of retreat in fully-coupled simulations relative to uncoupled simulations. Hydrology-driven ice shelf melt enhancements are the primary cause of domain-wide mass loss in low emission scenarios, but are secondary to ice sheet frictional feedbacks under high emission scenarios. The results presented here demonstrate that ice-subglacial hydrology interactions can significantly accelerate retreat of dynamic Antarctic glaciers and that future Antarctic sea level assessments that do not take these interactions into account might be severely underestimating Antarctic Ice Sheet mass loss. In this data publication, we present the model output and results associated with the following manuscript recently submitted to the Journal of Geophysical Research: Earth Surface: “Subglacial discharge accelerates ocean driven retreat of Aurora Subglacial Basin outlet glaciers over the 21st century”. We include yearly ice sheet model output between 2017-2100 for eight numerical ice-subglacial hydrology model runs. We also include the ice sheet and subglacial hydrology model initial states. In addition, we include all ocean forcing time-series (temperature and salinity for the low emission and high emission climate forcing scenarios for three glacial regions), which are used as input into the melt parameterization. Lastly, we include a MATLAB script that contains the code used to couple the ice-subglacial hydrology models as well as a "readme" file with further information on all data in this publication. Ice sheet model results: Direct results taken from the Ice-sheet and Sea-level System Model (ISSM, Larour et al. 2012) with no processing applied, provided yearly as *.mat files. Ice sheet and subglacial hydrology model initial states: Initial state of the ice sheet model (ice geometry, mesh information, inversion results, etc.) and subglacial hydrology model (steady-state water column thickness, effective pressure, channelized discharge, etc.) containing Aurora Subglacial Basin outlet glaciers with no processing applied, provided as a *.mat file. The contents of the *.mat file is a MATLAB variable of class "model", which is compatible with ISSM. Model coupling script: Documented MATLAB script ready to run with the provided data sets. Ocean temperature and salinity timeseries: Bottom ocean temperature (°C) and salinity (PSU) timeseries (January 1st, 2017 through December 31, 2099) extracted from an East Antarctic configuration of the ocean component of the MITgcm (Pelle et al., 2021). Temperature and salinity are provided bi-weekly and averged both in depth and along the ice fronts of Moscow University, Totten, and Vanderford Glaciers (see white dashed contour in figure 1b of the main manuscript text). Data are provided as *.mat files. Polygons that provide locaion to apply ocean temperature and salinity: Polygons provided as a list of x/y coordinates (meters) are provided in three *.exp files that cover the drainage basins of Moscow University, Totten, and Vanderford Glaciers (the polygon for Vanderford also includes the drainage basins of Adams, Bond, and Underwood Glaciers).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Mackallah, Chloe; Druken, Kelsey; Ridzwan, Syazwan Mohamed;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.C4MIP.CSIRO.ACCESS-ESM1-5' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu