- home
- Advanced Search
- Energy Research
- 2025-2025
- Open Source
- Embargo
- CN
- JP
- Energy Research
- 2025-2025
- Open Source
- Embargo
- CN
- JP
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Dung Duc Tran; Edward Park; Jingyu Wang; Ho Huu Loc; Janice Lee; Shaohua Zhan; Sameh A. Kantoush;pmid: 40010276
Environmental pressures have significantly impacted agricultural land use in deltas worldwide, leading to transformative changes in livelihoods. The Vietnamese Mekong Delta (VMD) is a vital region for national food security and global agricultural markets but is threatened by climate change, hydropower dams, sand mining, and excessive groundwater extraction. These pressures challenge the VMD's agricultural productivity and sustainability in the Anthropocene era. Despite efforts to foster resilience, there remains a critical gap in understanding how these agricultural transformations respond to environmental challenges. This review explores the multifaceted relationship between livelihood transformations and environmental pressures in the VMD, offering a comprehensive analysis of agricultural shifts over the past 50 years to identify viable adaptation pathways. Our review highlights that climate change-induced sea level rise and hydropower dam development both cause an increase in salinity intrusion, damage many agricultural lands and lead to substantial land use change and livelihood transformation, particularly in the floodplains and coastal areas. Additionally, sand mining has significantly influenced livelihood transitions in urban areas by causing riverbank erosion and leading to agricultural land losses. Furthermore, extensive groundwater extraction instigating land subsidence triggers land allocation, particularly in coastal zones. We emphasize the importance of adaptive management at both delta-wide and farm-level scales, integrating stakeholder engagement with institutional improvements. This approach aims to address environmental impacts while pursuing a pathway incorporating nature-based solutions and smart technologies to enhance the sustainability of agricultural systems in the VMD under current and future environmental pressures. Our review provides a foundation for developing adaptive strategies that promote sustainable development and resilience in deltaic environments and share knowledge for similar deltas worldwide.
Research@WUR arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Takashi S. Kohyama; Nanako Shigesada; Kokichi Kawasaki; Matthew D. Potts; Zamah S. Nur Hajar; Tetsuo I. Kohyama; Douglas Sheil;Abstract The coexistence of tree species in tropical forests has remained challenging to explain, characterise and predict with simple theoretical models. To address this phenomenon researchers have focused on processes and factors omitted in simple competition models. Meantime, theoretical considerations of simple models have sought out conditions for stable coexistence of many species. Here we show that a simple competition model parameterised using repeated forest tree inventory data can estimate the stable coexistence of numerous tree species and predict their biomass abundance and productivity in equilibrium communities. We apply a simple Lotka–Volterra competition model to describe species aboveground biomass, and employ leaf biomass as a proxy for exploitative competition among species. In such systems a globally stable multispecies equilibrium arises when, for every species, susceptibility of biomass growth to conspecific (same species) leaf biomass exceeds that to heterospecific leaf biomass. We applied this approach to tree species in the Pasoh 50‐ha plot of Malaysian lowland mixed dipterocarp forest. We parameterised species aboveground biomass productivity by tree growth, by recruitment, and losses from tree mortality. Biomass gains minus losses yields the biomass growth of each species population. Using variation in leaf biomass among quadrat subplots, we estimated the susceptibility of productivity by tree growth to conspecific and heterospecific leaf biomass. Our model analyses with plot census data predicted the stable coexistence of 351 of the 487 tree species assessed. Susceptibility to conspecific versus heterospecific leaf biomass was greater across all species (median: 95 times). The implied effect of conspecific competition appears to reflect ontogeny, that is declining relative tree growth with tree size. The equilibrium biomasses for predicted persistent species were broadly similar to observations. Removal of species indicates that ecosystem biomass and productivity at equilibrium increases asymptotically with species richness. Synthesis. Our analyses with a simple model provide a range of non‐trivial insights into tree species coexistence, community structure and ecosystem stability within a species‐rich rainforest. The insights available from such simple models provide references for a reassessment of the insights from more complex models and approaches.
Research@WUR arrow_drop_down Journal of EcologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Journal of EcologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Dung Duc Tran; Edward Park; Jingyu Wang; Ho Huu Loc; Janice Lee; Shaohua Zhan; Sameh A. Kantoush;pmid: 40010276
Environmental pressures have significantly impacted agricultural land use in deltas worldwide, leading to transformative changes in livelihoods. The Vietnamese Mekong Delta (VMD) is a vital region for national food security and global agricultural markets but is threatened by climate change, hydropower dams, sand mining, and excessive groundwater extraction. These pressures challenge the VMD's agricultural productivity and sustainability in the Anthropocene era. Despite efforts to foster resilience, there remains a critical gap in understanding how these agricultural transformations respond to environmental challenges. This review explores the multifaceted relationship between livelihood transformations and environmental pressures in the VMD, offering a comprehensive analysis of agricultural shifts over the past 50 years to identify viable adaptation pathways. Our review highlights that climate change-induced sea level rise and hydropower dam development both cause an increase in salinity intrusion, damage many agricultural lands and lead to substantial land use change and livelihood transformation, particularly in the floodplains and coastal areas. Additionally, sand mining has significantly influenced livelihood transitions in urban areas by causing riverbank erosion and leading to agricultural land losses. Furthermore, extensive groundwater extraction instigating land subsidence triggers land allocation, particularly in coastal zones. We emphasize the importance of adaptive management at both delta-wide and farm-level scales, integrating stakeholder engagement with institutional improvements. This approach aims to address environmental impacts while pursuing a pathway incorporating nature-based solutions and smart technologies to enhance the sustainability of agricultural systems in the VMD under current and future environmental pressures. Our review provides a foundation for developing adaptive strategies that promote sustainable development and resilience in deltaic environments and share knowledge for similar deltas worldwide.
Research@WUR arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Takashi S. Kohyama; Nanako Shigesada; Kokichi Kawasaki; Matthew D. Potts; Zamah S. Nur Hajar; Tetsuo I. Kohyama; Douglas Sheil;Abstract The coexistence of tree species in tropical forests has remained challenging to explain, characterise and predict with simple theoretical models. To address this phenomenon researchers have focused on processes and factors omitted in simple competition models. Meantime, theoretical considerations of simple models have sought out conditions for stable coexistence of many species. Here we show that a simple competition model parameterised using repeated forest tree inventory data can estimate the stable coexistence of numerous tree species and predict their biomass abundance and productivity in equilibrium communities. We apply a simple Lotka–Volterra competition model to describe species aboveground biomass, and employ leaf biomass as a proxy for exploitative competition among species. In such systems a globally stable multispecies equilibrium arises when, for every species, susceptibility of biomass growth to conspecific (same species) leaf biomass exceeds that to heterospecific leaf biomass. We applied this approach to tree species in the Pasoh 50‐ha plot of Malaysian lowland mixed dipterocarp forest. We parameterised species aboveground biomass productivity by tree growth, by recruitment, and losses from tree mortality. Biomass gains minus losses yields the biomass growth of each species population. Using variation in leaf biomass among quadrat subplots, we estimated the susceptibility of productivity by tree growth to conspecific and heterospecific leaf biomass. Our model analyses with plot census data predicted the stable coexistence of 351 of the 487 tree species assessed. Susceptibility to conspecific versus heterospecific leaf biomass was greater across all species (median: 95 times). The implied effect of conspecific competition appears to reflect ontogeny, that is declining relative tree growth with tree size. The equilibrium biomasses for predicted persistent species were broadly similar to observations. Removal of species indicates that ecosystem biomass and productivity at equilibrium increases asymptotically with species richness. Synthesis. Our analyses with a simple model provide a range of non‐trivial insights into tree species coexistence, community structure and ecosystem stability within a species‐rich rainforest. The insights available from such simple models provide references for a reassessment of the insights from more complex models and approaches.
Research@WUR arrow_drop_down Journal of EcologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Journal of EcologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu