- home
- Advanced Search
- Energy Research
- 7. Clean energy
- AU
- FR
- Applied Energy
- Energy Research
- 7. Clean energy
- AU
- FR
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Sheng-Chung Tzeng; Wei-Chuan Chang; Wei-Ping Ma; K. David Huang;Abstract The hybrid pneumatic power system (HPPS) proposed in this research replaces the battery’s electric-chemical energy with flow work and optimizes the management and utilization of the energy. This power system is able to keep the internal-combustion engine working at its optimal condition and turn its waste energy into effective mechanical energy and so enhance the thermal efficiency of the whole system. Using computer simulation software ITI-SIM, this study simulates the overall dynamic characteristics of the system in accordance with the regulated running-vehicle test-mode ECE47, and, with experimental verification and analysis, proves that this system can meet the requirements of the standard running-car mode. As for recycling the waste energy, the experimental results show that this design could offset the shortcomings of the low-density of pneumatic power and so effectively enhance the efficiency of the whole system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Lim, Juin Yau; Safder, Usman; How, Bing Shen; Ifaei, Pouya; Yoo, Chang Kyoo;handle: 1959.3/459255
Abstract The urge to increase renewable energy penetration into the power supply mix has been frequently highlighted in response to climate change. South Korea was analyzed as a case study for which the government has shown motivation to increase renewable energy penetration. Herein, a hybrid renewable energy system (HRES) including solar and wind energies were selected due to their relatively stable and mature technology. In addition, Power-to-X has been incorporated to cover other renewable energy options such as hydrogen and synthetic natural gas (SNG). Therefore, an approach of forecasting the weather characteristics and demand loading over a relatively long timeframe was implemented via deep learning techniques (LSTM and GRU) and statistical approaches (Fbprophet and SARIMA), respectively. A deployment strategy incorporating HRES and Power-to-X is then proposed in correspondence to the forecasted results of the 15 regions considered in this study. An extension of this, the reliability of the designed system is further assessed based on the probability of the demand losses with the aid of Monte-Carlo simulation. With the proposed deployment strategy, a total annual cost of 9.88 × 1011 $/year and a greenhouse gas reduction of 1.24 × 106 tons/year are expected for a 35% renewable energy penetration. However, only SNG shows relatively competitive cost (at 23.20 $/m3 SNG), whereas the average costs of electricity (0.133 $/kWh) and hydrogen (7.784 $/kg H2) across the regions are yet to be competitive compared to the current market prices. Nonetheless, the priority of deployment across regions has been identified via TOPSIS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Meunier, Simon; Protopapadaki, Christina; Baetens, Ruben; Saelens, Dirk;Abstract Integrating low-carbon technologies (e.g. heat pumps, photovoltaic systems) in buildings influences the stability of the low-voltage grid, which therefore often requires to be reinforced. This article proposes a techno-economic methodology to identify the reinforcements needed to maintain grid stability at the lowest life-cycle cost. Novel contributions include the consideration of three-phase connection of low-carbon technologies as a reinforcement option and the fact that we study to what extent grid reinforcements can mitigate voltage unbalance issues. Additionally, to reduce computing time, a dummy island approach is used, whereby one feeder is modelled in detail and the remainder of the distribution island is represented by an aggregated load. Finally, random repetitions are proposed, to consider uncertainties related to building properties, occupants and the location of low-carbon technologies in the feeders. The methodology is applied to investigate the integration of heat pumps and photovoltaic systems in typical Belgian rural and urban grids. For the rural grid, heat pumps may lead to significant reinforcement costs (up to 1230 €/dwelling), mainly due to voltage stability problems. For the urban grid, heat pump and photovoltaic integration causes low reinforcement cost (
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Mohammad Alipour; Firouzeh Taghikhah; Elnaz Irannezhad; Rodney A. Stewart; Oz Sahin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Federico Giudici; Andrea Castelletti; Elisabetta Garofalo; Matteo Giuliani; Holger R. Maier;handle: 2440/128268
Abstract Small Mediterranean islands are remote, off-grid communities characterized by carbon intensive electricity systems coupled with high energy consuming desalination technologies to produce potable water. The aim of this study is to propose a novel dynamic, multi-objective optimization approach for improving the sustainability of small islands through the introduction of renewable energy sources. The main contributions of our approach include: (i) dynamic modelling of desalination plant operations, (ii) joint optimization of system design and operations, (iii) multi-objective optimization to explore trade-offs between potentially conflicting objectives. We test our approach on the real case study of the Italian Ustica island by means of a comparative analysis with a traditional non-dynamic, least cost optimization approach. Numerical results show the effectiveness of our approach in identifying optimal system configurations, which outperform the traditional design with respect to different sustainability indicators, limiting the structural interventions, the investment costs and the environmental impacts. In particular, the optimal dynamic solutions able to satisfy the whole water demand allow high levels of penetration of renewable energy sources (up to more than 40%) to be reached, reducing the net present cost by about 2–3 M€ and the CO2 emissions by more than 200 tons/y.
Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Elsevier BV Hu, E.; Yang, Y.; Nishimura, A.; Yilmaz, F.; Kouzani, A.;handle: 2440/59301
Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.
Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 209 citations 209 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Quentin Falcoz; Quentin Falcoz; Thomas Fasquelle; Thomas Fasquelle; J.-F. Hoffmann; Pierre Neveu; Pierre Neveu;Abstract Regarding energy storage in concentrated solar power plants, thermocline technology is considered to be a cost effective but less efficient solution than conventional two-tank. However, thermocline storage charge and discharge are usually stopped when the varying outlet temperature reaches an arbitrarily chosen value. It is shown here that the stop of the thermocline charge depends on the overheating risk in the solar collectors, while the stop of the discharge is defined by the steam generator requirements. As a consequence, the temperature thresholds that must be defined by the experimental constraints are dynamic. Using these dynamic thresholds on an experimental setup comprising a 230 kWh thermocline tank and a 150 kWth parabolic trough solar field led to a charge efficiency of 95.7% and a 93.5% discharge efficiency. Thus, the varying outlet temperature of a thermocline storage system is not an issue when integrated in a concentrated solar power plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Arunima Malik; Manfred Lenzen; Keiichiro Kanemoto; Keiichiro Kanemoto; Darian McBain; Jun Lan;Abstract Understanding the drivers of past and present energy consumption trends is important for a range of stakeholders, including governments, businesses and international development organizations, in order to prepare for impacts on global supply chains caused by changes in future energy price or availability shocks. In this paper we use environmentally-extended input–output tables to: (a) quantify the long-term drivers that have led to diversified energy footprint profiles of 186 countries around the world from 1990 to 2010; (b) identify which countries and sectors recorded an increase or decrease in energy footprints during this time period; (c) highlight the effect of international outsourcing of energy-intensive production processes by decomposing the structural and spatial change in energy footprints; and (d) discuss the implications for national economic policy for the identified drivers. To this end, we use a detailed Multi-Regional Input–Output database and three prevalent structural decomposition analysis methods. To reduce biases in the results due to time lapse and currency variations, we convert input–output tables to common US$ and 1990-constant prices. This study provides a broad overview of the magnitude and distribution of the drivers for energy footprints across countries. The results of this study demonstrate that for almost all countries affluence and population growth are driving energy footprints worldwide, which is in part counteracted by the retarding effect of industrial energy intensity. In particular, this study demonstrates that with increasing per-capita GDP, the total energy footprint of a country is increasingly concentrated on imports or consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 230 citations 230 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Jonathon Dore; Jose I. Bilbao; Alistair B. Sproul; Baran Yildiz;Abstract The emergence of smart grid technologies and applications has meant there is increasing interest in utilising smart meters. Smart meter penetration has significantly increased over the last decade and they are becoming more widespread globally. Companies such as Google, Nest, Intel, General Electric and Amazon are amongst those companies which have been developing end use applications such as home and battery energy management systems which leverage smart meter data. In addition, utilities and networks are becoming more aware of the potential benefits of using household smart meter data in demand side management strategies such as energy efficiency and demand response. Motivated by this fact, the amount of research in this area has grown considerably in recent years. This paper reviews the most recent methods and techniques for using smart meter data such as forecasting, clustering, classification and optimization. The study covers various applications such as Home and Battery Energy Management Systems and demand response strategies enabled by the analysis of smart meter data. From a comprehensive review of the literature, it was observed that there are remarkable discrepancies between the studies, which make in-depth comparison and analysis challenging. Data analysis and reporting guidelines are suggested for studies which use smart meter data. These guidelines could provide a consistent and common framework which could enhance future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 189 citations 189 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Sheng-Chung Tzeng; Wei-Chuan Chang; Wei-Ping Ma; K. David Huang;Abstract The hybrid pneumatic power system (HPPS) proposed in this research replaces the battery’s electric-chemical energy with flow work and optimizes the management and utilization of the energy. This power system is able to keep the internal-combustion engine working at its optimal condition and turn its waste energy into effective mechanical energy and so enhance the thermal efficiency of the whole system. Using computer simulation software ITI-SIM, this study simulates the overall dynamic characteristics of the system in accordance with the regulated running-vehicle test-mode ECE47, and, with experimental verification and analysis, proves that this system can meet the requirements of the standard running-car mode. As for recycling the waste energy, the experimental results show that this design could offset the shortcomings of the low-density of pneumatic power and so effectively enhance the efficiency of the whole system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Lim, Juin Yau; Safder, Usman; How, Bing Shen; Ifaei, Pouya; Yoo, Chang Kyoo;handle: 1959.3/459255
Abstract The urge to increase renewable energy penetration into the power supply mix has been frequently highlighted in response to climate change. South Korea was analyzed as a case study for which the government has shown motivation to increase renewable energy penetration. Herein, a hybrid renewable energy system (HRES) including solar and wind energies were selected due to their relatively stable and mature technology. In addition, Power-to-X has been incorporated to cover other renewable energy options such as hydrogen and synthetic natural gas (SNG). Therefore, an approach of forecasting the weather characteristics and demand loading over a relatively long timeframe was implemented via deep learning techniques (LSTM and GRU) and statistical approaches (Fbprophet and SARIMA), respectively. A deployment strategy incorporating HRES and Power-to-X is then proposed in correspondence to the forecasted results of the 15 regions considered in this study. An extension of this, the reliability of the designed system is further assessed based on the probability of the demand losses with the aid of Monte-Carlo simulation. With the proposed deployment strategy, a total annual cost of 9.88 × 1011 $/year and a greenhouse gas reduction of 1.24 × 106 tons/year are expected for a 35% renewable energy penetration. However, only SNG shows relatively competitive cost (at 23.20 $/m3 SNG), whereas the average costs of electricity (0.133 $/kWh) and hydrogen (7.784 $/kg H2) across the regions are yet to be competitive compared to the current market prices. Nonetheless, the priority of deployment across regions has been identified via TOPSIS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Meunier, Simon; Protopapadaki, Christina; Baetens, Ruben; Saelens, Dirk;Abstract Integrating low-carbon technologies (e.g. heat pumps, photovoltaic systems) in buildings influences the stability of the low-voltage grid, which therefore often requires to be reinforced. This article proposes a techno-economic methodology to identify the reinforcements needed to maintain grid stability at the lowest life-cycle cost. Novel contributions include the consideration of three-phase connection of low-carbon technologies as a reinforcement option and the fact that we study to what extent grid reinforcements can mitigate voltage unbalance issues. Additionally, to reduce computing time, a dummy island approach is used, whereby one feeder is modelled in detail and the remainder of the distribution island is represented by an aggregated load. Finally, random repetitions are proposed, to consider uncertainties related to building properties, occupants and the location of low-carbon technologies in the feeders. The methodology is applied to investigate the integration of heat pumps and photovoltaic systems in typical Belgian rural and urban grids. For the rural grid, heat pumps may lead to significant reinforcement costs (up to 1230 €/dwelling), mainly due to voltage stability problems. For the urban grid, heat pump and photovoltaic integration causes low reinforcement cost (
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Mohammad Alipour; Firouzeh Taghikhah; Elnaz Irannezhad; Rodney A. Stewart; Oz Sahin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Federico Giudici; Andrea Castelletti; Elisabetta Garofalo; Matteo Giuliani; Holger R. Maier;handle: 2440/128268
Abstract Small Mediterranean islands are remote, off-grid communities characterized by carbon intensive electricity systems coupled with high energy consuming desalination technologies to produce potable water. The aim of this study is to propose a novel dynamic, multi-objective optimization approach for improving the sustainability of small islands through the introduction of renewable energy sources. The main contributions of our approach include: (i) dynamic modelling of desalination plant operations, (ii) joint optimization of system design and operations, (iii) multi-objective optimization to explore trade-offs between potentially conflicting objectives. We test our approach on the real case study of the Italian Ustica island by means of a comparative analysis with a traditional non-dynamic, least cost optimization approach. Numerical results show the effectiveness of our approach in identifying optimal system configurations, which outperform the traditional design with respect to different sustainability indicators, limiting the structural interventions, the investment costs and the environmental impacts. In particular, the optimal dynamic solutions able to satisfy the whole water demand allow high levels of penetration of renewable energy sources (up to more than 40%) to be reached, reducing the net present cost by about 2–3 M€ and the CO2 emissions by more than 200 tons/y.
Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Elsevier BV Hu, E.; Yang, Y.; Nishimura, A.; Yilmaz, F.; Kouzani, A.;handle: 2440/59301
Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.
Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 209 citations 209 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Quentin Falcoz; Quentin Falcoz; Thomas Fasquelle; Thomas Fasquelle; J.-F. Hoffmann; Pierre Neveu; Pierre Neveu;Abstract Regarding energy storage in concentrated solar power plants, thermocline technology is considered to be a cost effective but less efficient solution than conventional two-tank. However, thermocline storage charge and discharge are usually stopped when the varying outlet temperature reaches an arbitrarily chosen value. It is shown here that the stop of the thermocline charge depends on the overheating risk in the solar collectors, while the stop of the discharge is defined by the steam generator requirements. As a consequence, the temperature thresholds that must be defined by the experimental constraints are dynamic. Using these dynamic thresholds on an experimental setup comprising a 230 kWh thermocline tank and a 150 kWth parabolic trough solar field led to a charge efficiency of 95.7% and a 93.5% discharge efficiency. Thus, the varying outlet temperature of a thermocline storage system is not an issue when integrated in a concentrated solar power plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Arunima Malik; Manfred Lenzen; Keiichiro Kanemoto; Keiichiro Kanemoto; Darian McBain; Jun Lan;Abstract Understanding the drivers of past and present energy consumption trends is important for a range of stakeholders, including governments, businesses and international development organizations, in order to prepare for impacts on global supply chains caused by changes in future energy price or availability shocks. In this paper we use environmentally-extended input–output tables to: (a) quantify the long-term drivers that have led to diversified energy footprint profiles of 186 countries around the world from 1990 to 2010; (b) identify which countries and sectors recorded an increase or decrease in energy footprints during this time period; (c) highlight the effect of international outsourcing of energy-intensive production processes by decomposing the structural and spatial change in energy footprints; and (d) discuss the implications for national economic policy for the identified drivers. To this end, we use a detailed Multi-Regional Input–Output database and three prevalent structural decomposition analysis methods. To reduce biases in the results due to time lapse and currency variations, we convert input–output tables to common US$ and 1990-constant prices. This study provides a broad overview of the magnitude and distribution of the drivers for energy footprints across countries. The results of this study demonstrate that for almost all countries affluence and population growth are driving energy footprints worldwide, which is in part counteracted by the retarding effect of industrial energy intensity. In particular, this study demonstrates that with increasing per-capita GDP, the total energy footprint of a country is increasingly concentrated on imports or consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 230 citations 230 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.10.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Jonathon Dore; Jose I. Bilbao; Alistair B. Sproul; Baran Yildiz;Abstract The emergence of smart grid technologies and applications has meant there is increasing interest in utilising smart meters. Smart meter penetration has significantly increased over the last decade and they are becoming more widespread globally. Companies such as Google, Nest, Intel, General Electric and Amazon are amongst those companies which have been developing end use applications such as home and battery energy management systems which leverage smart meter data. In addition, utilities and networks are becoming more aware of the potential benefits of using household smart meter data in demand side management strategies such as energy efficiency and demand response. Motivated by this fact, the amount of research in this area has grown considerably in recent years. This paper reviews the most recent methods and techniques for using smart meter data such as forecasting, clustering, classification and optimization. The study covers various applications such as Home and Battery Energy Management Systems and demand response strategies enabled by the analysis of smart meter data. From a comprehensive review of the literature, it was observed that there are remarkable discrepancies between the studies, which make in-depth comparison and analysis challenging. Data analysis and reporting guidelines are suggested for studies which use smart meter data. These guidelines could provide a consistent and common framework which could enhance future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 189 citations 189 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu