- home
- Advanced Search
- Energy Research
- AU
- Energy Research
- AU
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAuthors:Anna Peregon;
Anna Peregon;Anna Peregon
Anna Peregon in OpenAIREPeter A. Raymond;
Peter A. Raymond
Peter A. Raymond in OpenAIREGrégoire Broquet;
+43 AuthorsGrégoire Broquet
Grégoire Broquet in OpenAIREAnna Peregon;
Anna Peregon;Anna Peregon
Anna Peregon in OpenAIREPeter A. Raymond;
Peter A. Raymond
Peter A. Raymond in OpenAIREGrégoire Broquet;
Wei Li;Grégoire Broquet
Grégoire Broquet in OpenAIRERong Wang;
Rong Wang
Rong Wang in OpenAIREAlessandro Baccini;
Alessandro Baccini
Alessandro Baccini in OpenAIREJens Hartmann;
Jens Hartmann
Jens Hartmann in OpenAIREJulia Pongratz;
Julia Pongratz;Julia Pongratz
Julia Pongratz in OpenAIREAlexandra G. Konings;
Alexandra G. Konings
Alexandra G. Konings in OpenAIREChunjing Qiu;
Chunjing Qiu
Chunjing Qiu in OpenAIREAna Bastos;
Ana Bastos
Ana Bastos in OpenAIREJinfeng Chang;
Anatoly Shvidenko;Jinfeng Chang
Jinfeng Chang in OpenAIREFabienne Maignan;
Fabienne Maignan
Fabienne Maignan in OpenAIREChao Yue;
Chao Yue;Chao Yue
Chao Yue in OpenAIREYi Yin;
Yi Yin
Yi Yin in OpenAIREVanessa Haverd;
Pierre Regnier;Vanessa Haverd
Vanessa Haverd in OpenAIREHui Yang;
Ashley-P Ballantyne; Yi Liu; Riccardo Valentini;Hui Yang
Hui Yang in OpenAIREShushi Peng;
Shushi Peng
Shushi Peng in OpenAIREPhilippe Ciais;
Philippe Ciais; Anthony W. King;Philippe Ciais
Philippe Ciais in OpenAIREJakob Zscheischler;
Jakob Zscheischler
Jakob Zscheischler in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREBertrand Guenet;
Bertrand Guenet
Bertrand Guenet in OpenAIRERonny Lauerwald;
Ronny Lauerwald;Ronny Lauerwald
Ronny Lauerwald in OpenAIREPrabir K. Patra;
Prabir K. Patra;Prabir K. Patra
Prabir K. Patra in OpenAIREYitong Yao;
Yitong Yao
Yitong Yao in OpenAIREYilong Wang;
Goulven Gildas Laruelle;Yilong Wang
Yilong Wang in OpenAIREDan Zhu;
Sebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREBenjamin Poulter;
Benjamin Poulter
Benjamin Poulter in OpenAIREDaniel S. Goll;
Daniel S. Goll
Daniel S. Goll in OpenAIREGlen P. Peters;
Glen P. Peters
Glen P. Peters in OpenAIREJosep G. Canadell;
Rob J Andres;Josep G. Canadell
Josep G. Canadell in OpenAIREA. Johannes Dolman;
A. Johannes Dolman
A. Johannes Dolman in OpenAIREpmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2023 United Kingdom, Netherlands, Switzerland, France, FrancePublisher:Springer International Publishing Authors:Mario Herrero;
Mario Herrero
Mario Herrero in OpenAIREDaniel Mason-D'Croz;
Philip K. Thornton; Jessica Fanzo; +13 AuthorsDaniel Mason-D'Croz
Daniel Mason-D'Croz in OpenAIREMario Herrero;
Mario Herrero
Mario Herrero in OpenAIREDaniel Mason-D'Croz;
Philip K. Thornton; Jessica Fanzo;Daniel Mason-D'Croz
Daniel Mason-D'Croz in OpenAIREJonathan Rushton;
Jonathan Rushton
Jonathan Rushton in OpenAIRECécile Godde;
Cécile Godde
Cécile Godde in OpenAIREAlexandra L. Bellows;
Adrian de Groot;Alexandra L. Bellows
Alexandra L. Bellows in OpenAIREJeda Palmer;
Jeda Palmer
Jeda Palmer in OpenAIREJinfeng Chang;
Jinfeng Chang
Jinfeng Chang in OpenAIREH.H.E. van Zanten;
H.H.E. van Zanten
H.H.E. van Zanten in OpenAIREBarbara Wieland;
Barbara Wieland
Barbara Wieland in OpenAIREFabrice DeClerck;
Fabrice DeClerck
Fabrice DeClerck in OpenAIREStella Nordhagen;
Stella Nordhagen
Stella Nordhagen in OpenAIRETy Beal;
Ty Beal
Ty Beal in OpenAIRECarlos González;
M. Gill;Carlos González
Carlos González in OpenAIREAbstractLivestock are a critically important component of the food system, although the sector needs a profound transformation to ensure that it contributes to a rapid transition towards sustainable food systems. This chapter reviews and synthesises the evidence available on changes in demand for livestock products in the last few decades, and the multiple socio-economic roles that livestock have around the world. We also describe the nutrition, health, and environmental impacts for which the sector is responsible. We propose eight critical actions for transitioning towards a more sustainable operating space for livestock. (1) Facilitate shifts in the consumption of animal source foods (ASF), recognising that global reductions will be required, especially in communities with high consumption levels, while promoting increased levels in vulnerable groups, including the undernourished, pregnant women and the elderly. (2) Continue work towards the sustainable intensification of livestock systems, paying particular attention to animal welfare, food-feed competition, blue water use, disease transmission and perverse economic incentives. (3) Embrace the potential of circularity in livestock systems as a way of partially decoupling livestock from land. (4) Adopt practices that lead to the direct or indirect mitigation of greenhouse gases. (5) Adopt some of the vast array of novel technologies at scale and design incentive mechanisms for their rapid deployment. (6) Diversify the protein sources available for human consumption and feed, focusing on the high-quality alternative protein sources that have lower environmental impacts. (7) Tackle antimicrobial resistance effectively through a combination of technology and new regulations, particularly for the fast-growing poultry and pork sectors and for feedlot operations. (8) Implement true cost of food and true-pricing approaches to ASF consumption.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Part of book or chapter of book . 2023 . Peer-reviewedFull-Text: https://boris.unibe.ch/182518/1/Wieland_Livestock_and_Sustainable_Food_...978-3-031-15703-5_20.pdfData sources: Bern Open Repository and Information System (BORIS)CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126681Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEdinburgh Research ExplorerPart of book or chapter of book . 2023Data sources: Edinburgh Research ExplorerWageningen Staff PublicationsPart of book or chapter of book . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-15703-5_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FrancePublisher:Wiley Authors:Forster, Daniel;
Forster, Daniel
Forster, Daniel in OpenAIREHelama, Samuli;
Helama, Samuli
Helama, Samuli in OpenAIREHarrison, Matthew;
Harrison, Matthew
Harrison, Matthew in OpenAIRERotz, Clarence;
+5 AuthorsRotz, Clarence
Rotz, Clarence in OpenAIREForster, Daniel;
Forster, Daniel
Forster, Daniel in OpenAIREHelama, Samuli;
Helama, Samuli
Helama, Samuli in OpenAIREHarrison, Matthew;
Harrison, Matthew
Harrison, Matthew in OpenAIRERotz, Clarence;
Rotz, Clarence
Rotz, Clarence in OpenAIREChang, Jinfeng;
Chang, Jinfeng
Chang, Jinfeng in OpenAIRECiais, Phillippe;
Ciais, Phillippe
Ciais, Phillippe in OpenAIREPattey, Elizabeth;
Pattey, Elizabeth
Pattey, Elizabeth in OpenAIREVirkajärvi, Perttu;
Virkajärvi, Perttu
Virkajärvi, Perttu in OpenAIREShurpali, Narasinha;
Shurpali, Narasinha
Shurpali, Narasinha in OpenAIREdoi: 10.1002/glr2.12010
AbstractPast assessments report negative impacts of the climate crisis in boreal areas; but milder and shorter winters and elevated atmospheric CO2may provide opportunities for agricultural productivity potentially playing a significant role in future food security. Arable cropping systems are expanding in boreal areas, but the regional mainstay will likely continue to be livestock production. Agroecological models can when appropriately calibrated and evaluated, facilitate improved productivity while minimising environmental impacts by identifying system interactions, and quantifying greenhouse gas emissions, soil carbon stocks and fertiliser use. While models designed for temperate and tropical zones abound, few are developed specifically for boreal zones, and there is uncertainty around the performance of existing models in boreal areas. We reviewed model performance across boreal environments and management systems. We identified a dearth of modelling studies in boreal regions, with the publication of three or less papers per year since the year 2000, constituting a significant research gap. Models IFSM and BASGRA_N performed best in grassland production, DNDC best in predicting soil N2O and NH3emissions. No model outperformed all others, strengthening the case for ensemble modelling. Existing agroecological models would be worthy of further evaluation, providing model improvements designed for boreal systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/glr2.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/glr2.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 FrancePublisher:Wiley Funded by:EC | ANIMALCHANGE, EC | HELIXEC| ANIMALCHANGE ,EC| HELIXAuthors:Jean-François Soussana;
Jean-François Soussana
Jean-François Soussana in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREPetr Havlik;
Petr Havlik
Petr Havlik in OpenAIRENicolas Vuichard;
+6 AuthorsNicolas Vuichard
Nicolas Vuichard in OpenAIREJean-François Soussana;
Jean-François Soussana
Jean-François Soussana in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREPetr Havlik;
Petr Havlik
Petr Havlik in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIREBenjamin Sultan;
Benjamin Sultan
Benjamin Sultan in OpenAIREMario Herrero;
Mario Herrero
Mario Herrero in OpenAIREJinfeng Chang;
Jinfeng Chang;Jinfeng Chang
Jinfeng Chang in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIREdoi: 10.1111/gcb.13050
pmid: 26207894
AbstractSeveral lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m−2 yr−2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 France, Austria, Belgium, SpainPublisher:Copernicus GmbH Funded by:EC | LUC4C, EC | IMBALANCE-P, EC | PAGE21 +1 projectsEC| LUC4C ,EC| IMBALANCE-P ,EC| PAGE21 ,EC| HELIXAuthors: Xianzhou Zhang;Anna Peregon;
Anna Peregon
Anna Peregon in OpenAIREChao Yue;
Chao Yue
Chao Yue in OpenAIREJean-François Soussana;
+16 AuthorsJean-François Soussana
Jean-François Soussana in OpenAIREXianzhou Zhang;Anna Peregon;
Anna Peregon
Anna Peregon in OpenAIREChao Yue;
Chao Yue
Chao Yue in OpenAIREJean-François Soussana;
Jean-François Soussana
Jean-François Soussana in OpenAIREJinfeng Chang;
Jinfeng Chang;Jinfeng Chang
Jinfeng Chang in OpenAIREPhilippe Ciais;
Yongfei Bai;Philippe Ciais
Philippe Ciais in OpenAIREShushi Peng;
Shushi Peng
Shushi Peng in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIRETao Wang;
Tao Wang
Tao Wang in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREPetr Havlik;
Petr Havlik
Petr Havlik in OpenAIREMario Herrero;
Mario Herrero
Mario Herrero in OpenAIREJoanna Joiner;
Joanna Joiner
Joanna Joiner in OpenAIREMatteo Campioli;
Nina P. Mironycheva-Tokareva;Matteo Campioli
Matteo Campioli in OpenAIREDidier Hauglustaine;
Didier Hauglustaine
Didier Hauglustaine in OpenAIREShilong Piao;
Natalya Kosykh;Shilong Piao
Shilong Piao in OpenAIREhandle: 10067/1342880151162165141
Abstract. Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the GHG balance and surface energy budget of this biome, both at field scale and at large spatial scale. Yet, global gridded historical information on grassland management intensity is not available. Combining modelled grass biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of un-managed grasslands, and the fraction of mown versus grazed area at a resolution of 0.5° by 0.5°. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 1901–2012. The nature of grass-biomass supply (i.e., forage grass from mown grassland and biomass grazed) is simulated by the process based model ORCHIDEE-GM driven by historical climate change, rising CO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study is simulated to increase from 5.1 × 106 km2 in 1901 to 11 × 106 km2 in 2000, although the expansion pathway varies between different regions. The gridded grassland management intensity maps are model-dependent because they depend on Net Primary Productivity (NPP), which is the reason why specific attention is given to the evaluation of NPP. Namely, ORCHIDEE-GM is calibrated for C3 and C4 grass functional traits, and then evaluated against a series of observations from site-level NPP measurements to two global satellite products of Gross Primary Productivity (GPP) (MODIS-GPP and SIF data). The distribution of GPP and NPP with and without management, are evaluated against observations at different spatial and temporal scales. Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle and interannual variability of grassland productivity at global scale well, and thus appears to be appropriate for global applications.
IIASA PURE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2016Data sources: Institutional Repository Universiteit AntwerpenHAL-Ecole des Ponts ParisTechArticle . 2016License: CC BYData sources: HAL-Ecole des Ponts ParisTechINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-2...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/bg-1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2016-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01388912Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2016Data sources: Institutional Repository Universiteit AntwerpenHAL-Ecole des Ponts ParisTechArticle . 2016License: CC BYData sources: HAL-Ecole des Ponts ParisTechINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-2...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/bg-1...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2016-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Netherlands, France, United Kingdom, Germany, Switzerland, France, France, France, France, Japan, France, Netherlands, Netherlands, Canada, Spain, France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMPACT2C, EC | HELIXEC| IMPACT2C ,EC| HELIXAuthors:Jeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREErwin Schmid;
Tyler D. Eddy; Tyler D. Eddy; +55 AuthorsErwin Schmid
Erwin Schmid in OpenAIREJeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREErwin Schmid;
Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy;Erwin Schmid
Erwin Schmid in OpenAIREDerek P. Tittensor;
Derek P. Tittensor;Derek P. Tittensor
Derek P. Tittensor in OpenAIRERene Orth;
Rene Orth; Yadu Pokhrel; Joshua Elliott;Rene Orth
Rene Orth in OpenAIREYusuke Satoh;
Yusuke Satoh;Yusuke Satoh
Yusuke Satoh in OpenAIREChristian Folberth;
Christian Folberth
Christian Folberth in OpenAIRELouis François;
Louis François
Louis François in OpenAIREAndrew D. Friend;
Andrew D. Friend
Andrew D. Friend in OpenAIRECatherine Morfopoulos;
Catherine Morfopoulos
Catherine Morfopoulos in OpenAIRENikolay Khabarov;
Peter Lawrence; Naota Hanasaki;Nikolay Khabarov
Nikolay Khabarov in OpenAIREMichelle T. H. van Vliet;
Michelle T. H. van Vliet
Michelle T. H. van Vliet in OpenAIREAkihiko Ito;
Akihiko Ito
Akihiko Ito in OpenAIRESonia I. Seneviratne;
Sonia I. Seneviratne
Sonia I. Seneviratne in OpenAIREVeronika Huber;
Veronika Huber
Veronika Huber in OpenAIREThomas A. M. Pugh;
Thomas A. M. Pugh
Thomas A. M. Pugh in OpenAIREJinfeng Chang;
Jinfeng Chang
Jinfeng Chang in OpenAIRETobias Stacke;
Tobias Stacke
Tobias Stacke in OpenAIREPhilippe Ciais;
Lila Warszawski; Jan Volkholz;Philippe Ciais
Philippe Ciais in OpenAIREMatthias Büchner;
Matthias Büchner
Matthias Büchner in OpenAIREYoshihide Wada;
Christopher P. O. Reyer;Yoshihide Wada
Yoshihide Wada in OpenAIREXuhui Wang;
Xuhui Wang; Xuhui Wang;Xuhui Wang
Xuhui Wang in OpenAIREDieter Gerten;
Dieter Gerten;Dieter Gerten
Dieter Gerten in OpenAIRESebastian Ostberg;
Qiuhong Tang;Sebastian Ostberg
Sebastian Ostberg in OpenAIREGen Sakurai;
Gen Sakurai
Gen Sakurai in OpenAIREDavid A. Carozza;
David A. Carozza;David A. Carozza
David A. Carozza in OpenAIREChristoph Müller;
Christoph Müller
Christoph Müller in OpenAIREJacob Schewe;
Jacob Schewe
Jacob Schewe in OpenAIRELutz Breuer;
Lutz Breuer
Lutz Breuer in OpenAIREDelphine Deryng;
Delphine Deryng
Delphine Deryng in OpenAIREHeike K. Lotze;
Heike K. Lotze
Heike K. Lotze in OpenAIREHannes Müller Schmied;
Robert Vautard;Hannes Müller Schmied
Hannes Müller Schmied in OpenAIREHyungjun Kim;
Fang Zhao;Hyungjun Kim
Hyungjun Kim in OpenAIREAllard de Wit;
Jörg Steinkamp; Katja Frieler;Allard de Wit
Allard de Wit in OpenAIRESimon N. Gosling;
Simon N. Gosling
Simon N. Gosling in OpenAIRELukas Gudmundsson;
Lukas Gudmundsson
Lukas Gudmundsson in OpenAIREMarta Coll;
Marta Coll
Marta Coll in OpenAIREHanqin Tian;
Hanqin Tian
Hanqin Tian in OpenAIREdoi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 202 citations 202 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustriaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Soils Research to deliver..., UKRI | Delivering Food Security ..., EC | IMBALANCE-P +2 projectsUKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| Delivering Food Security on Limited Land (DEVIL) ,EC| IMBALANCE-P ,EC| VERIFY ,UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplandsAuthors:Jinfeng Chang;
Philippe Ciais;Jinfeng Chang
Jinfeng Chang in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREPete Smith;
+13 AuthorsPete Smith
Pete Smith in OpenAIREJinfeng Chang;
Philippe Ciais;Jinfeng Chang
Jinfeng Chang in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREPete Smith;
Pete Smith
Pete Smith in OpenAIREMario Herrero;
Mario Herrero
Mario Herrero in OpenAIREPetr Havlík;
Petr Havlík
Petr Havlík in OpenAIREMichael Obersteiner;
Michael Obersteiner
Michael Obersteiner in OpenAIREBertrand Guenet;
Bertrand Guenet
Bertrand Guenet in OpenAIREDaniel Goll;
Daniel Goll
Daniel Goll in OpenAIREWei Li;
Wei Li
Wei Li in OpenAIREVictoria Naipal;
Shushi Peng;Victoria Naipal
Victoria Naipal in OpenAIREChunjing Qiu;
Chunjing Qiu
Chunjing Qiu in OpenAIREHanqin Tian;
Nicolas Viovy;Hanqin Tian
Hanqin Tian in OpenAIREChao Ye;
Chao Ye
Chao Ye in OpenAIREDan Zhu;
pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03136901Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20406-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Germany, AustriaPublisher:Wiley Funded by:NSF | CNH: Pluvials, Droughts, ..., NSERC, SNSF | Climate and Environmental... +1 projectsNSF| CNH: Pluvials, Droughts, Energetics, and the Mongol Empire ,NSERC ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,NSF| Collaborative Research: EaSM2--Wildfires and Regional Climate Variability - Mechanisms, Modeling, and PredictionAuthors:Wilfried Winiwarter;
Wilfried Winiwarter;Wilfried Winiwarter
Wilfried Winiwarter in OpenAIRESebastian Lienert;
Sebastian Lienert; +25 AuthorsSebastian Lienert
Sebastian Lienert in OpenAIREWilfried Winiwarter;
Wilfried Winiwarter;Wilfried Winiwarter
Wilfried Winiwarter in OpenAIRESebastian Lienert;
Sebastian Lienert;Sebastian Lienert
Sebastian Lienert in OpenAIREJia Yang;
Jia Yang;Jia Yang
Jia Yang in OpenAIREJinfeng Chang;
Bowen Zhang; Palmira Messina;Jinfeng Chang
Jinfeng Chang in OpenAIREPhilippe Ciais;
Rona Thompson;Philippe Ciais
Philippe Ciais in OpenAIREShufen Pan;
Shufen Pan
Shufen Pan in OpenAIREAkihiko Ito;
Akihiko Ito
Akihiko Ito in OpenAIRERobert B. Jackson;
Robert B. Jackson
Robert B. Jackson in OpenAIREFortunat Joos;
Fortunat Joos;Fortunat Joos
Fortunat Joos in OpenAIREEri Saikawa;
Eri Saikawa
Eri Saikawa in OpenAIREStefan Olin;
Stefan Gerber;Stefan Olin
Stefan Olin in OpenAIRESönke Zaehle;
Sönke Zaehle
Sönke Zaehle in OpenAIREChanghui Peng;
Changhui Peng
Changhui Peng in OpenAIREChaoqun Lu;
Chaoqun Lu
Chaoqun Lu in OpenAIREEric A. Davidson;
Eric A. Davidson
Eric A. Davidson in OpenAIREAlmut Arneth;
Almut Arneth
Almut Arneth in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREJosep G. Canadell;
Josep G. Canadell
Josep G. Canadell in OpenAIRERongting Xu;
Rongting Xu
Rongting Xu in OpenAIREHanqin Tian;
Hanqin Tian;Hanqin Tian
Hanqin Tian in OpenAIREpmid: 30414347
AbstractOur understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.
IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 283 citations 283 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, France, AustriaPublisher:Wiley Authors:Petr Havlik;
Petr Havlik
Petr Havlik in OpenAIREJinfeng Chang;
Jinfeng Chang;Jinfeng Chang
Jinfeng Chang in OpenAIREShushi Peng;
+3 AuthorsShushi Peng
Shushi Peng in OpenAIREPetr Havlik;
Petr Havlik
Petr Havlik in OpenAIREJinfeng Chang;
Jinfeng Chang;Jinfeng Chang
Jinfeng Chang in OpenAIREShushi Peng;
Shushi Peng
Shushi Peng in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIREMario Herrero;
Mario Herrero
Mario Herrero in OpenAIREYi Yin;
doi: 10.1002/essoar.10506703.1 , 10.1029/2021av000391 , 10.60692/9z5tx-99k52 , 10.60692/39kr5-byp59 , 10.60692/2dx7c-xjp65 , 10.60692/57h62-89810 , 10.60692/vk2wq-6bk04 , 10.60692/4fx9s-0jp59 , 10.60692/fdn0g-8dc44 , 10.60692/jj5ze-xgk25 , 10.60692/3wz44-bc544 , 10.60692/q2eqr-53w55 , 10.60692/4v32a-75s76 , 10.60692/4xzcs-kad34
doi: 10.1002/essoar.10506703.1 , 10.1029/2021av000391 , 10.60692/9z5tx-99k52 , 10.60692/39kr5-byp59 , 10.60692/2dx7c-xjp65 , 10.60692/57h62-89810 , 10.60692/vk2wq-6bk04 , 10.60692/4fx9s-0jp59 , 10.60692/fdn0g-8dc44 , 10.60692/jj5ze-xgk25 , 10.60692/3wz44-bc544 , 10.60692/q2eqr-53w55 , 10.60692/4v32a-75s76 , 10.60692/4xzcs-kad34
AbstractThe livestock sector is the largest source of anthropogenic methane emissions and is projected to increase in the future with the increased demand for livestock products. Here, we compare livestock methane emissions and emission intensities, defined by the amount of methane emitted per unit of animal proteins, estimated by different methodologies, and identify mitigation potentials in different regions of the world based on possible future projections. We show that emission intensity decreased for most livestock categories globally during 2000–2018, due to an increasing protein‐production efficiency, and the IPCC Tier 2 method should be used for capturing the temporal changes in the emission intensities. We further show that efforts on the demand‐side to promote balanced, healthy, and environmentally sustainable diets in most countries will not be sufficient to mitigate livestock methane emissions without parallel efforts to improve production efficiency. The latter efforts have much greater mitigating effects than demand‐side efforts, and hence should be prioritized in a few developing countries that contribute most of the mitigation potential.
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1002/essoar.10506703.1Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03238413Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03238413Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10506703.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1002/essoar.10506703.1Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03238413Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03238413Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10506703.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu