- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- AU
- Energy Research
- Open Access
- Closed Access
- Open Source
- AU
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO-ARCCSS.ACCESS-CM2.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsiacchi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsiacchi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160101436O. Orozovic; A. Lavrinec; Y. Alkassar; J. Chen; K. Williams; M.G. Jones; G.E. Klinzing;handle: 1959.13/1420846
The many advantages of slug flow pneumatic conveying are outweighed by the lack of understanding of the flow mechanisms. For horizontal slug flow, the unique feature is the stationary layer of material found between the travelling slugs, which was recently shown to be characterised by two constants. This paper looks to utilise the vast data available in the literature, which is representative of the entire mode of flow, and relates the stationary layer and slug velocity to predict the two constants from only these inputs. It was found that, even for the vast range of materials and systems considered, slug flow encompasses a narrow bound of the two constants. Furthermore, an empirical approach that was developed to relate the layer fraction and particle velocity was found to provide good agreement to measurements and may be of use in other investigations that require an additional equation for modelling.
Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:University of Melbourne Authors: SARAH MCCOLL-GAUSDEN (3871372);FROST summary outputs of the area burnt by short interval fires, high intensity fires, and overall area burnt of alpine ash stands in Victoria under various climate scenarios.
University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16458132.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16458132.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Korea (Republic of)Publisher:Wiley Amit Kumar Harit; Eui Dae Jung; Jung Min Ha; Jong Hyun Park; Ayushi Tripathi; Young Wook Noh; Myoung Hoon Song; Han Young Woo;pmid: 34846779
Abstractπ‐Conjugated polyelectrolytes (CPEs) have been studied as interlayers on top of a separate hole transport layer (HTL) to improve the wetting, interfacial defect passivation, and crystal growth of perovskites. However, very few CPE‐based HTLs have been reported without rational molecular design as ideal HTLs for perovskite solar cells (PeSCs). In this study, the authors synthesize a triphenylamine‐based anionic CPE (TPAFS‐TMA) as an HTL for p‐i‐n‐type PeSCs. TPAFS‐TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4‐phenyl)‐2,4,6‐trimethylphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS‐TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, the PeSC with the TPAFS‐TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA‐based device (PCE of 19.97%). In addition, it exhibits negligible device‐to‐device variations in its photovoltaic performance, contrary to the device with PTAA. Finally, a large‐area PeSC (1 cm2) and mini‐module (3 cm2), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS‐TMA may suggest its great potential as an HTL for large‐area PeSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Authors: Mauricio Rodriguez-Lanetty; Paulina Kaniewska; Paul R. Campbell; David I. Kline; +5 AuthorsMauricio Rodriguez-Lanetty; Paulina Kaniewska; Paul R. Campbell; David I. Kline; David J. Miller; Sophie Dove; Sophie Dove; Ove Hoegh-Guldberg; Ove Hoegh-Guldberg;As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 223 citations 223 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:University of Melbourne Authors: Alexei Trundle (2876768); Jessie Briggs (6610712); Michele Acuto (5271224);An editable communications and analysis tool for presenting the relevance of all UN SDGs and their subsidiary targets and indicators to a particular locality or municipality. Default selections are derived from UN-Habitat classifications of urban relevance across all 17 Goals, with shaded segments representative of relevant targets, and the stars within each segment denoting the indicators aligned with each target (current as of mid-2020). This communications tool has potential relevance and adaptability to other sectors beyond local government that apply the SDGs.
University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16599293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16599293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015 AustraliaPublisher:Griffith University Authors: Ward, Doug; Tews, Kenn; Bartolo, Renee; Kennard, Mark J.;handle: 10072/395786
The Northern Australian Aquatic Assets Geodatabase (NAAAG) v2.0 has been developed to assist in the quantification and communication of risks associated with threats to aquatic ecological assets across northern Australia. The NAAAG comprises a base level set of spatial layers on aquatic features (rivers, lakes, swamps, estuaries, springs) and context layers (catchments, land use, protected areas, terrain, vegetation, roads and places) associated with the aquatic features. The NAAAG also includes a catchment based assessment of relative risk scores associated with threats arising from factors such as flow alteration, sea level rise and climate change. Because a great deal of spatial data is now freely available for download, the NAAAG is not a comprehensive database but has been designed as a base level set of data on aquatic features upon which users can incorporate additional data sets if desired. The NAAAG v2.0 data package has been developed using ESRI Geodatabase technologies and the data layers have been set up for viewing as an ArcMAP 10.1 project. A User Guide for the NAAAG, provides information on the design and structure of the geodatabase, how to use the data, and background information on data layers stored in the geodatabase. Metadata and supporting documentation for the data sets incorporated into the geodatabases is also included in the data package.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineDataset . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4225/01/58197470e09b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineDataset . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4225/01/58197470e09b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Igor Martek; M. Hosseini; Asheem Shrestha; Edmundas Zavadskas; Stewart Seaton;doi: 10.3390/su10040981
Sustainability has emerged, arguably, as the premiere mission of contemporary architecture. Green assessment tools abound, consultancy services flourish, buildings are marketed on the basis of sustainability performance, and government, media, and corporations seem preoccupied with assessing the quality of the built environment through a green lens. Yet for all the effort, and indeed for all the progress made, fundamental issues resistant to the structural change that is essential for genuine sustainability remain. This paper reviews the state of play of sustainability across the urban landscape. It considers the road travelled so far, and points out some of the major challenges that lie ahead.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shaomin Liu; Hari B. Vuthaluru; Hussein A. Mohammed;Abstract Background Parabolic Trough Solar Collector (PTSC) is one of the most popular and an effective device that converts solar radiation into a heat or useful energy. However, it suffers from high temperature gradient and low thermal efficiency. The solution for this problem is to use new advanced coolants (hybrid nanofluids) in order to enhance PTSC's thermal efficiency. Methods A numerical analysis on the thermo-hydraulic performance of a PTSC receiver's tube equipped with conical turbulators is presented. The Navier-Stokes equations are solved using Finite Volume Method (FVM) coupled with Monte Carlo Ray Tracing (MCRT) method. The flow and thermal characteristics as well as entropy generation of the PTSC's receiver tube are investigated for three hybrid nanofluids (Ag-SWCNT, Ag-MWCNT, and Ag-MgO) having a mixing ratio of (50:50) dispersed in Syltherm oil 800, Reynolds number (5000 to 100,000) and fluid inlet temperatures (400 to 650 K). Significant findings The conical turbulators effectively augmented the thermal performance by 233.4% utilising Ag-SWCNT/Syltherm oil instead of pure Syltherm oil. The performance evaluation criterion is found to be in the range of 0.9–1.82. The thermal and exergetic efficiencies increased by 11.5% and 18.2%, respectively. The maximum decrement in the entropy generation rate and entropy generation ratio are 42.7% and 33.7%.
Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Inter-Hemispheric Climate..., NSF | Collaborative Research: A..., NSF | Collaborative Research: I... +3 projectsNSF| Inter-Hemispheric Climate Teleconnections in response to Massive Iceberg Discharge in the North Atlantic ,NSF| Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, AntarcticaHmiel, B.; Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.; Smith, A. M.; Place, P. F.; Harth, C.; Beaudette, R.; Hua, Q.; Yang, B.; Vimont, I.; Michel, S. E.; Severinghaus, J. P.; Etheridge, D.; Bromley, T.; Schmitt, Jochen; Fain, X.; Weiss, R. F.; Dlugokencky, E.;pmid: 32076219
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO-ARCCSS.ACCESS-CM2.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsiacchi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsiacchi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160101436O. Orozovic; A. Lavrinec; Y. Alkassar; J. Chen; K. Williams; M.G. Jones; G.E. Klinzing;handle: 1959.13/1420846
The many advantages of slug flow pneumatic conveying are outweighed by the lack of understanding of the flow mechanisms. For horizontal slug flow, the unique feature is the stationary layer of material found between the travelling slugs, which was recently shown to be characterised by two constants. This paper looks to utilise the vast data available in the literature, which is representative of the entire mode of flow, and relates the stationary layer and slug velocity to predict the two constants from only these inputs. It was found that, even for the vast range of materials and systems considered, slug flow encompasses a narrow bound of the two constants. Furthermore, an empirical approach that was developed to relate the layer fraction and particle velocity was found to provide good agreement to measurements and may be of use in other investigations that require an additional equation for modelling.
Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:University of Melbourne Authors: SARAH MCCOLL-GAUSDEN (3871372);FROST summary outputs of the area burnt by short interval fires, high intensity fires, and overall area burnt of alpine ash stands in Victoria under various climate scenarios.
University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16458132.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16458132.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Korea (Republic of)Publisher:Wiley Amit Kumar Harit; Eui Dae Jung; Jung Min Ha; Jong Hyun Park; Ayushi Tripathi; Young Wook Noh; Myoung Hoon Song; Han Young Woo;pmid: 34846779
Abstractπ‐Conjugated polyelectrolytes (CPEs) have been studied as interlayers on top of a separate hole transport layer (HTL) to improve the wetting, interfacial defect passivation, and crystal growth of perovskites. However, very few CPE‐based HTLs have been reported without rational molecular design as ideal HTLs for perovskite solar cells (PeSCs). In this study, the authors synthesize a triphenylamine‐based anionic CPE (TPAFS‐TMA) as an HTL for p‐i‐n‐type PeSCs. TPAFS‐TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4‐phenyl)‐2,4,6‐trimethylphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS‐TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, the PeSC with the TPAFS‐TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA‐based device (PCE of 19.97%). In addition, it exhibits negligible device‐to‐device variations in its photovoltaic performance, contrary to the device with PTAA. Finally, a large‐area PeSC (1 cm2) and mini‐module (3 cm2), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS‐TMA may suggest its great potential as an HTL for large‐area PeSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Authors: Mauricio Rodriguez-Lanetty; Paulina Kaniewska; Paul R. Campbell; David I. Kline; +5 AuthorsMauricio Rodriguez-Lanetty; Paulina Kaniewska; Paul R. Campbell; David I. Kline; David J. Miller; Sophie Dove; Sophie Dove; Ove Hoegh-Guldberg; Ove Hoegh-Guldberg;As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 223 citations 223 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:University of Melbourne Authors: Alexei Trundle (2876768); Jessie Briggs (6610712); Michele Acuto (5271224);An editable communications and analysis tool for presenting the relevance of all UN SDGs and their subsidiary targets and indicators to a particular locality or municipality. Default selections are derived from UN-Habitat classifications of urban relevance across all 17 Goals, with shaded segments representative of relevant targets, and the stars within each segment denoting the indicators aligned with each target (current as of mid-2020). This communications tool has potential relevance and adaptability to other sectors beyond local government that apply the SDGs.
University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16599293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Melbou... arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26188/16599293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015 AustraliaPublisher:Griffith University Authors: Ward, Doug; Tews, Kenn; Bartolo, Renee; Kennard, Mark J.;handle: 10072/395786
The Northern Australian Aquatic Assets Geodatabase (NAAAG) v2.0 has been developed to assist in the quantification and communication of risks associated with threats to aquatic ecological assets across northern Australia. The NAAAG comprises a base level set of spatial layers on aquatic features (rivers, lakes, swamps, estuaries, springs) and context layers (catchments, land use, protected areas, terrain, vegetation, roads and places) associated with the aquatic features. The NAAAG also includes a catchment based assessment of relative risk scores associated with threats arising from factors such as flow alteration, sea level rise and climate change. Because a great deal of spatial data is now freely available for download, the NAAAG is not a comprehensive database but has been designed as a base level set of data on aquatic features upon which users can incorporate additional data sets if desired. The NAAAG v2.0 data package has been developed using ESRI Geodatabase technologies and the data layers have been set up for viewing as an ArcMAP 10.1 project. A User Guide for the NAAAG, provides information on the design and structure of the geodatabase, how to use the data, and background information on data layers stored in the geodatabase. Metadata and supporting documentation for the data sets incorporated into the geodatabases is also included in the data package.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineDataset . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4225/01/58197470e09b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineDataset . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4225/01/58197470e09b5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Igor Martek; M. Hosseini; Asheem Shrestha; Edmundas Zavadskas; Stewart Seaton;doi: 10.3390/su10040981
Sustainability has emerged, arguably, as the premiere mission of contemporary architecture. Green assessment tools abound, consultancy services flourish, buildings are marketed on the basis of sustainability performance, and government, media, and corporations seem preoccupied with assessing the quality of the built environment through a green lens. Yet for all the effort, and indeed for all the progress made, fundamental issues resistant to the structural change that is essential for genuine sustainability remain. This paper reviews the state of play of sustainability across the urban landscape. It considers the road travelled so far, and points out some of the major challenges that lie ahead.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shaomin Liu; Hari B. Vuthaluru; Hussein A. Mohammed;Abstract Background Parabolic Trough Solar Collector (PTSC) is one of the most popular and an effective device that converts solar radiation into a heat or useful energy. However, it suffers from high temperature gradient and low thermal efficiency. The solution for this problem is to use new advanced coolants (hybrid nanofluids) in order to enhance PTSC's thermal efficiency. Methods A numerical analysis on the thermo-hydraulic performance of a PTSC receiver's tube equipped with conical turbulators is presented. The Navier-Stokes equations are solved using Finite Volume Method (FVM) coupled with Monte Carlo Ray Tracing (MCRT) method. The flow and thermal characteristics as well as entropy generation of the PTSC's receiver tube are investigated for three hybrid nanofluids (Ag-SWCNT, Ag-MWCNT, and Ag-MgO) having a mixing ratio of (50:50) dispersed in Syltherm oil 800, Reynolds number (5000 to 100,000) and fluid inlet temperatures (400 to 650 K). Significant findings The conical turbulators effectively augmented the thermal performance by 233.4% utilising Ag-SWCNT/Syltherm oil instead of pure Syltherm oil. The performance evaluation criterion is found to be in the range of 0.9–1.82. The thermal and exergetic efficiencies increased by 11.5% and 18.2%, respectively. The maximum decrement in the entropy generation rate and entropy generation ratio are 42.7% and 33.7%.
Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Inter-Hemispheric Climate..., NSF | Collaborative Research: A..., NSF | Collaborative Research: I... +3 projectsNSF| Inter-Hemispheric Climate Teleconnections in response to Massive Iceberg Discharge in the North Atlantic ,NSF| Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, AntarcticaHmiel, B.; Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.; Smith, A. M.; Place, P. F.; Harth, C.; Beaudette, R.; Hua, Q.; Yang, B.; Vimont, I.; Michel, S. E.; Severinghaus, J. P.; Etheridge, D.; Bromley, T.; Schmitt, Jochen; Fain, X.; Weiss, R. F.; Dlugokencky, E.;pmid: 32076219
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu