
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions

pmid: 32076219
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions.
- French National Centre for Scientific Research France
- University of Colorado System United States
- University of Grenoble France
- University of Bern Switzerland
- University of California System United States
History, Fossil Fuels, 550, General Science & Technology, 18th Century, Natural Gas, History, 18th Century, Global Warming, History, 21st Century, Human Activities, Ice Cover, Biomass, Carbon Radioisotopes, 19th Century, Atmosphere, History, 19th Century, History, 20th Century, 21st Century, Climate Action, 20th Century, Coal, Petroleum, Methane
History, Fossil Fuels, 550, General Science & Technology, 18th Century, Natural Gas, History, 18th Century, Global Warming, History, 21st Century, Human Activities, Ice Cover, Biomass, Carbon Radioisotopes, 19th Century, Atmosphere, History, 19th Century, History, 20th Century, 21st Century, Climate Action, 20th Century, Coal, Petroleum, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).186 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
