- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- 2. Zero hunger
- BE
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- 2. Zero hunger
- BE
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingAuthors:Minasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.; +30 AuthorsMcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREMinasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.;Mcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREArrouays, Dominique;
Chambers, Adam;Arrouays, Dominique
Arrouays, Dominique in OpenAIREChaplot, Vincent;
Chen, Zueng-Sang;Chaplot, Vincent
Chaplot, Vincent in OpenAIRECheng, Kun;
Cheng, Kun
Cheng, Kun in OpenAIREDas, Bhabani S.;
Das, Bhabani S.
Das, Bhabani S. in OpenAIREField, Damien J.;
Gimona, Alessandro;Field, Damien J.
Field, Damien J. in OpenAIREHedley, Carolyn B.;
Hong, Suk Young; Mandal, Biswapati;Hedley, Carolyn B.
Hedley, Carolyn B. in OpenAIREMarchant, Ben P.;
Marchant, Ben P.
Marchant, Ben P. in OpenAIREMartin, Manuel;
Mcconkey, Brian G.;Martin, Manuel
Martin, Manuel in OpenAIREMulder, Vera Leatitia;
Mulder, Vera Leatitia
Mulder, Vera Leatitia in OpenAIREO'Rourke, Sharon;
O'Rourke, Sharon
O'Rourke, Sharon in OpenAIRERicher-De-Forges, Anne C;
Odeh, Inakwu;Richer-De-Forges, Anne C
Richer-De-Forges, Anne C in OpenAIREPadarian, José;
Paustian, Keith; Pan, Genxing;Padarian, José
Padarian, José in OpenAIREPoggio, Laura;
Poggio, Laura
Poggio, Laura in OpenAIRESavin, Igor;
Stolbovoy, Vladimir;Savin, Igor
Savin, Igor in OpenAIREStockmann, Uta;
Stockmann, Uta
Stockmann, Uta in OpenAIRESulaeman, Yiyi;
Tsui, Chun-Chih;Sulaeman, Yiyi
Sulaeman, Yiyi in OpenAIREVågen, Tor-Gunnar;
Vågen, Tor-Gunnar
Vågen, Tor-Gunnar in OpenAIREvan Wesemael, Bas;
Winowiecki, Leigh;van Wesemael, Bas
van Wesemael, Bas in OpenAIREThe ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Spain, Spain, Germany, SpainPublisher:Springer Science and Business Media LLC Authors:Dohm, Juliane C;
Minoche, André E;Dohm, Juliane C
Dohm, Juliane C in OpenAIREHoltgräwe, Daniela;
Holtgräwe, Daniela
Holtgräwe, Daniela in OpenAIRECapella-Gutiérrez, Salvador;
+15 AuthorsCapella-Gutiérrez, Salvador
Capella-Gutiérrez, Salvador in OpenAIREDohm, Juliane C;
Minoche, André E;Dohm, Juliane C
Dohm, Juliane C in OpenAIREHoltgräwe, Daniela;
Holtgräwe, Daniela
Holtgräwe, Daniela in OpenAIRECapella-Gutiérrez, Salvador;
Zakrzewski, Falk; Tafer, Hakim;Capella-Gutiérrez, Salvador
Capella-Gutiérrez, Salvador in OpenAIRERupp, Oliver;
Rosleff Sörensen, Thomas;Rupp, Oliver
Rupp, Oliver in OpenAIREStracke, Ralf;
Stracke, Ralf
Stracke, Ralf in OpenAIREReinhardt, Richard;
Reinhardt, Richard
Reinhardt, Richard in OpenAIREGoesmann, Alexander;
Kraft, Thomas; Schulz, Britta;Goesmann, Alexander
Goesmann, Alexander in OpenAIREStadler, Peter F;
Schmidt, Thomas;Stadler, Peter F
Stadler, Peter F in OpenAIREGabaldón, Toni;
Lehrach, Hans;Gabaldón, Toni
Gabaldón, Toni in OpenAIREWeisshaar, Bernd;
Weisshaar, Bernd
Weisshaar, Bernd in OpenAIREHimmelbauer, Heinz;
Himmelbauer, Heinz
Himmelbauer, Heinz in OpenAIRESugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 548 citations 548 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:Frontiers Media SA Authors:Samuel Appiah Ofori;
Samuel Appiah Ofori; Samuel Appiah Ofori; Samuel Appiah Ofori; +2 AuthorsSamuel Appiah Ofori
Samuel Appiah Ofori in OpenAIRESamuel Appiah Ofori;
Samuel Appiah Ofori; Samuel Appiah Ofori; Samuel Appiah Ofori; Samuel Jerry Cobbina; Samuel Obiri;Samuel Appiah Ofori
Samuel Appiah Ofori in OpenAIREThe current and projected warming of the earth is unequivocal with humans playing a strong role as both perpetrators and victims. The warming on the African continent is projected to be greater than the global average with an increased average temperature of 3–6°C by the end of the century under a high Representative Concentration Pathway. In Africa, the Sub-Saharan region is identified as the most vulnerable to the changing climate due to its very low capacity to adapt to or mitigate climate change. While it is common to identify studies conducted to assess how climate change independently impacts water, land, or food resources, very limited studies have sought to address the interlinkages, synergies, and trade-offs existing between climate change, water, land, and food (WLF) resources as a system in Sub-Saharan Africa (SSA). The climate change and WLF security nexus, therefore, seeks to address this shortfall in literature and subsequently serve as a relevant source of information for decision-making and policy implementation concerning climate change mitigation and adaptation. In this study, 41 relevant studies were selected from Web of Science, Google Scholar, ResearchGate, and institutional websites. We provide information on the independent relationships between climate change and WLF resources, and further discuss the existing inter-linkages between climate change and the WLF security in SSA using the nexus approach, with recommendations on how decision making and policy implementations should be done using the climate change and WLF security nexus approach.
Frontiers in Sustain... arrow_drop_down Frontiers in Sustainable Food SystemsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2021.680924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 1 Powered bymore_vert Frontiers in Sustain... arrow_drop_down Frontiers in Sustainable Food SystemsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2021.680924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors:Marc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg
Marc van den Homberg in OpenAIREMarc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld;Marc van den Homberg
Marc van den Homberg in OpenAIRESjoerd Stuit;
Sjoerd Stuit
Sjoerd Stuit in OpenAIREFood insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors:Alexis Pérez-Fargallo;
Alexis Pérez-Fargallo
Alexis Pérez-Fargallo in OpenAIRELaura Marín-Restrepo;
Laura Marín-Restrepo
Laura Marín-Restrepo in OpenAIRESergio Contreras-Espinoza;
Sergio Contreras-Espinoza
Sergio Contreras-Espinoza in OpenAIREDavid Bienvenido-Huertas;
David Bienvenido-Huertas
David Bienvenido-Huertas in OpenAIREhandle: 10481/84542
Energy poverty is a multidimensional and complex phenomenon, and several indicators have been developed to evaluate and quantify it. However, often greater complexity does not mean greater precision. In the case of Chile, the Energy Poverty Network established the Three-dimensional and Territorial Indicator of Energy Poverty (EPTTI in Spanish) to assess the energy poverty situation of Chilean families. The EPTTI is based on a multidimensional approach with 10 indicators. Although, their evaluation involves resources that may hinder a practical application. This study analyzed the consistency between the individual responses of an indicator and the adapted EPTTI evaluation, using a database of 641 families. The results show that the excessive energy expenditure and the type and energy source of heating systems indicators are the variables with the greatest influence on energy poverty assessments. These results served to both propose simplified approaches for energy poverty assessment with the indicator, and establish policies of action that regional governments should address to reduce the situation of energy poverty Confort ambiental y pobreza energ´etica (+CO-PE)” of the University of the Bío-Bío, the Thematic Network 722RT0135 “Red Iberoamericana de Pobreza Energ´etica y Bienestar Ambiental” (RIPEBA) National Agency for Research and Development (ANID, in Spanish) Thematic Networks of the CYTED Program for 2021 Universidad de Granada / CBUA
Energy and Buildings arrow_drop_down Repositorio Institucional Universidad de GranadaArticle . 2023License: CC BY NC NDData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down Repositorio Institucional Universidad de GranadaArticle . 2023License: CC BY NC NDData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Germany, BelgiumPublisher:Elsevier BV Funded by:EC | POPFULLEC| POPFULLAuthors:Vanbeveren, Stefan P.P.;
Vanbeveren, Stefan P.P.
Vanbeveren, Stefan P.P. in OpenAIRESchweier, Janine;
Schweier, Janine
Schweier, Janine in OpenAIREBerhongaray, Gonzalo;
Berhongaray, Gonzalo
Berhongaray, Gonzalo in OpenAIRECeulemans, Reinhart;
Ceulemans, Reinhart
Ceulemans, Reinhart in OpenAIREhandle: 10067/1224100151162165141
Abstract Harvesting is the most expensive, but the least investigated process in the cultivation of short rotation woody crops (SRWC). To get a better idea of the harvesting process (in terms of its performance, productivity, cost, soil compaction, cutting height and quality as well as biomass losses), we closely monitored the second harvest of a SRWC culture in Flanders (Belgium). We compared our results to the harvests of other, small European parcels. The trees at our site were harvested with both a manual and a mechanised (Stemster harvester) cut-and-store system, while the cut-and-chip system was analysed from an extensive literature survey. The production cost (to the edge of the field) at our site reached 426 (manual) and 94 (mechanised) € t −1 , while the average values found in the literature are respectively 104 and 78 € t −1 , versus 17 € t −1 for the cut-and-chip harvesting system. The productivity at our site reached 14 (manual) and 22 (mechanised) oven-dry tonnes per scheduled machine hour, while the average values found in the literature are respectively 15 and 23 t h −1 . Based on the good performance (ha h −1 ) and productivity (t h −1 ) of the cut-and-chip system as well as its lower costs, this harvesting system is recommended for operational SRWC.
Biomass and Bioenerg... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.1016/j.bi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.1016/j.bi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPEAuthors:Nicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; +21 AuthorsXiuchen Wu
Xiuchen Wu in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier;Xiuchen Wu
Xiuchen Wu in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIREP. Di Tommasi;
Christine Moureaux;P. Di Tommasi
P. Di Tommasi in OpenAIREEric Larmanou;
Tanguy Manise; W.W.P. Jans; Luca Vitale;Eric Larmanou
Eric Larmanou in OpenAIREThomas Grünwald;
Vincenzo Magliulo;Thomas Grünwald
Thomas Grünwald in OpenAIREJan Elbers;
Dominique Ripoche;Jan Elbers
Jan Elbers in OpenAIRETiphaine Tallec;
Tiphaine Tallec
Tiphaine Tallec in OpenAIREEric Ceschia;
Anne De Ligne;Eric Ceschia
Eric Ceschia in OpenAIREMartin Wattenbach;
Martin Wattenbach
Martin Wattenbach in OpenAIREBenjamin Loubet;
Benjamin Loubet
Benjamin Loubet in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREChristian Bernhofer;
Christian Bernhofer
Christian Bernhofer in OpenAIREAbstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Netherlands, Netherlands, Netherlands, Belgium, NetherlandsPublisher:Frontiers Media SA Authors:De Gernier, H.;
De Pessemier, J.; Xu, J.J.;De Gernier, H.
De Gernier, H. in OpenAIRECristescu, S.M.;
+4 AuthorsCristescu, S.M.
Cristescu, S.M. in OpenAIREDe Gernier, H.;
De Pessemier, J.; Xu, J.J.;De Gernier, H.
De Gernier, H. in OpenAIRECristescu, S.M.;
Cristescu, S.M.;Cristescu, S.M.
Cristescu, S.M. in OpenAIREVan Der Straeten, D.;
Van Der Straeten, D.
Van Der Straeten, D. in OpenAIREVerbruggen, N.;
Hermans, C.;Verbruggen, N.
Verbruggen, N. in OpenAIREpmid: 26904047
pmc: PMC4748056
An original approach to develop sustainable agriculture with less nitrogen fertilizer inputs is to tackle the cross-talk between nitrogen nutrition and plant growth regulators. In particular the gaseous hormone, ethylene, is a prime target for that purpose. The variation of ethylene production in natural accessions of the model species Arabidopsis thaliana was explored in response to the nitrate supply. Ethylene was measured with a laser-based photoacoustic detector. First, experimental conditions were established with Columbia-0 (Col-0) accession, which was grown in vitro on horizontal plates across a range of five nitrate concentrations (0.5, 1, 2.5, 5, or 10 mM). The concentrations of 1 and 10 mM nitrate were retained for further characterization. Along with a decrease of total dry biomass and higher biomass allocation to the roots, the ethylene production was 50% more important at 1 mM than at 10 mM nitrate. The total transcript levels of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASES (ACS) in roots and those of ACC OXIDASES (ACO) in shoots increased by 100% between the same treatments. This was mainly due to higher transcript levels of ACS6 and of ACO2 and ACO4 respectively. The assumption was that during nitrogen deficiency, the greater biomass allocation in favor of the roots was controlled by ethylene being released in the shoots after conversion of ACC originating from the roots. Second, biomass and ethylene productions were measured in 20 additional accessions. Across all accessions, the total dry biomass and ethylene production were correlated negatively at 1 mM but positively at 10 mM nitrate. Furthermore, polymorphism was surveyed in ACC and ethylene biosynthesis genes and gene products among accessions. Very few substitutions modifying the amino acids properties in conserved motifs of the enzymes were found in the accessions. Natural variation of ethylene production could be further explored to improve Nitrogen Use Efficiency (NUE), in particular by manipulating features like the biomass production and the timing of senescence upon nitrogen limitation.
Frontiers in Plant S... arrow_drop_down Ghent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2016.00070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down Ghent University Academic BibliographyArticle . 2016Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2016.00070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Belgium, Sweden, DenmarkPublisher:MDPI AG Funded by:EC | SMART PROTEINEC| SMART PROTEINAuthors:Listia Rini;
Listia Rini
Listia Rini in OpenAIREJoachim J. Schouteten;
Joachim J. Schouteten
Joachim J. Schouteten in OpenAIREIlona Faber;
Kai-Brit Bechtold; +3 AuthorsIlona Faber
Ilona Faber in OpenAIREListia Rini;
Listia Rini
Listia Rini in OpenAIREJoachim J. Schouteten;
Joachim J. Schouteten
Joachim J. Schouteten in OpenAIREIlona Faber;
Kai-Brit Bechtold;Ilona Faber
Ilona Faber in OpenAIREFederico J. A. Perez-Cueto;
Xavier Gellynck;Federico J. A. Perez-Cueto
Federico J. A. Perez-Cueto in OpenAIREHans De Steur;
Hans De Steur
Hans De Steur in OpenAIREdoi: 10.3390/su15010306
Plant-based food (PBF) is on the rise as an alternative for animal-based food. Europe is leading in the market size compared with the global market. However, the high failure rate for new food products is challenging the success of new PBF in the market. This paper aims to unravel the key success factors (KSFs) from existing brands, contributing to the knowledge on how to achieve success in PBF market. Two subsequent studies employing online surveys were included, which targeted food expert participants. Study 1 focused on the collection of KSFs related to PBF brands utilizing the card sorting approach. Study 2 employed cluster analysis to further investigate the KSFs among different PBF brands. The findings identified six clusters of KSFs under the external and internal factors supporting the success of the PBF brands. Two (‘Consumer’ and ‘Trend’) and four (‘Ideology’, ‘Marketing strategy’, ‘Innovation management’, and ‘Management structure’) clusters were assigned into external and internal factors, respectively. Furthermore, cluster analysis identified four brand clusters: ‘Mature’, ‘Targeted’, ‘Newcomer’, and ‘Established but diversifying’ clusters. Each brand cluster utilized different KSFs into their strategies; however, both external and internal factors were applied, suggesting that there is no one-size-fits-all KSF to succeed in the market.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/1/306/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/15/1/306/pdfData sources: SygmaCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 9 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/1/306/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/15/1/306/pdfData sources: SygmaCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15010306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Cambridge University Press (CUP) Authors:Adnan Aminu Adnan;
Jan Diels;Adnan Aminu Adnan
Adnan Aminu Adnan in OpenAIREJibrin Mohammed Jibrin;
Alpha Yaya Kamara; +4 AuthorsJibrin Mohammed Jibrin
Jibrin Mohammed Jibrin in OpenAIREAdnan Aminu Adnan;
Jan Diels;Adnan Aminu Adnan
Adnan Aminu Adnan in OpenAIREJibrin Mohammed Jibrin;
Alpha Yaya Kamara; Abdulwahab Saliu Shaibu;Jibrin Mohammed Jibrin
Jibrin Mohammed Jibrin in OpenAIREIsmail Ibrahim Garba;
Peter Craufurd;Ismail Ibrahim Garba
Ismail Ibrahim Garba in OpenAIREMiet Maertens;
Miet Maertens
Miet Maertens in OpenAIREhandle: 10568/113391
AbstractIn this study, the CERES-Maize model was calibrated and evaluated using data from 60 farmers’ fields across Sudan (SS) and Northern Guinea (NGS) Savannas of Nigeria in 2016 and 2017 rainy seasons. The trials consisted of 10 maize varieties sown at three different sowing densities (2.6, 5.3, and 6.6 plants m−2) across farmers’ field with contrasting agronomic and nutrient management histories. Model predictions in both years and locations were close to observed data for both calibration and evaluation exercises as evidenced by low normalized root mean square error (RMSE) (≤15%), high modified d-index (> 0.6), and high model efficiency (>0.45) values for the phenology, growth, and yield data across all varieties and agro-ecologies. In both years and locations and for both calibration and evaluation exercises, very good agreements were found between observed and model-simulated grain yields, number of days to physiological maturity, above-ground biomass, and harvest index. Two separate scenario analyses were conducted using the long-term (26 years) weather records for Bunkure (representing the SS) and Zaria (representing the NGS). The early and extra-early varieties were used in the SS while the intermediate and late varieties were used in the NGS. The result of the scenario analyses showed that early and extra-early varieties grown in the SS responds to increased sowing density up to 8.8 plants m−2 when the recommended rate of N fertilizers (90 kg N ha−1) was applied. In the NGS, yield responses were observed up to a density of 6.6 plants m−2 with the application of 120 kg N ha−1 for the intermediate and late varieties. The highest mean monetary returns to land (US$1336.1 ha−1) were simulated for scenarios with 8.8 plants m−2 and 90 kg N ha−1, while the highest return to labor (US$957.7 ha−1) was simulated for scenarios with 6.6 plants m−2 and 90 Kg N ha−1 in the SS. In the NGS, monetary return per hectare was highest with a planting density of 6.6 plants m−2 with the application of 120 kg N, while the return to labor was highest for sowing density of 5.3 plants m−2 at the same N fertilizer application rates. The results of the long-term simulations predicted increases in yield and economic returns to land and labor by increasing sowing densities in the maize belts of Nigeria without applying N fertilizers above the recommended rates.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113391Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s001447972000037x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113391Data sources: Bielefeld Academic Search Engine (BASE)Experimental AgricultureArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s001447972000037x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu