Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article . 2021
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2021
License: CC BY NC ND
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forecasting transitions in the state of food security with machine learning using transferable features

Authors: Marc van den Homberg; Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld; Sjoerd Stuit;

Forecasting transitions in the state of food security with machine learning using transferable features

Abstract

Food insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.

Countries
Italy, Netherlands
Keywords

Environmental Engineering, Defence, Safety and Security, Early warning systems, Machine learning, SDG 13 - Climate Action, Environmental Chemistry, SDG 2 - Zero Hunger, Waste Management and Disposal, Knowmad Institut, Netherlands, Aurora Universities Network, Open data, Extreme gradient boosting, Food security, Energy Research, Pollution, EUTOPIA Alliance, IPC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 1%
Green
hybrid