- home
- Advanced Search
- Energy Research
- 2016-2025
- 7. Clean energy
- 1. No poverty
- CA
- Energy Research
- 2016-2025
- 7. Clean energy
- 1. No poverty
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aashish Gaurav; Chau T.Q. Mai; Flora T. T. Ng; Stéphane Dumas;Production of biodiesel from yellow grease (waste cooking oil and waste animal fats) is fast emerging as a promising alternative to address the twin challenges before the biodiesel industry today-fluctuation in prices of vegetable oil and the food versus fuel debate. Yellow grease has a high percentage of free fatty acids (FFA) and proves to be an unsuitable feedstock for biodiesel production from commercially viable alkali-catalyzed production systems due to saponification problems.“Green” methodologies based on heterogeneous solid acid catalyzed reactions have the potential to simultaneously promote esterification and transesterification reactions of yellow grease to produce biodiesel without soap formation and offer easy catalyst separation without generation of toxic streams. This paper presents kinetic studies for the conversion of model yellow grease feeds to biodiesel using a heteropolyacid supported on alumina (HSiW/Al2O3) using a batch autoclave. Three model yellow grease feeds were prepared using canola oil with added FFA such as palmitic, oleic and linoleic acid. A pseudo homogeneous kinetic model for the parallel esterification and transesterification was developed. The rate constants and activation parameters for esterification and transesterification reactions for the model yellow grease feeds were determined. The rate constants for esterification are higher than the transesterification rate constants. The kinetic model was validated using the experimental biodiesel data obtained from processing a commercial yellow grease feed. The kinetic model could be used to design novel processes to convert various low-value waste oils, fats and non-food grade oils to sustainable biodiesel. Keywords: Yellow grease, Canola oil, Free fatty acids, Heteropolyacid, Kinetics for esterification and transesterification
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:NSERCNSERCFranz Segovia; Pierre Blanchet; Ben Amor; Costel Barbuta; Robert Beauregard;doi: 10.3390/su11082258
The benefits of aluminum lamination in improving the physical and mechanical properties of wood-based composites is now well documented. This paper shows the contribution of life cycle assessment (LCA) as a tool to assess and compare the environmental footprint in the development of laminated panels. SimaPro 9.0 software, using Ecoinvent database was used to analyze the environmental impacts associated with the manufacturing of wood aluminum-laminated (WAL) panels and aluminum honeycomb panel (AHP). The impact 2002+ method was used to estimate environmental impacts. The LCA results show that the WAL panels manufacturing had a lower environmental impact than AHP manufacturing. In term of product, wood-based composites were the best choice as a core in laminated panel manufacturing. Wood-based composite manufacturing showed environmental advantages in all damage categories except in ecosystem quality. Aluminum alloy sheets manufacturing played an important role in the generation of environmental impacts for laminated panel development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Habib Satria; Rahmad B. Y. Syah; Moncef L. Nehdi; Monjee K. Almustafa; Abdelrahman Omer Idris Adam;doi: 10.3390/su15065027
This article proposes an effective evolutionary hybrid optimization method for identifying unknown parameters in photovoltaic (PV) models based on the northern goshawk optimization algorithm (NGO) and pattern search (PS). The chaotic sequence is used to improve the exploration capability of the NGO algorithm technique while evading premature convergence. The suggested hybrid algorithm, chaotic northern goshawk, and pattern search (CNGPS), takes advantage of the chaotic NGO algorithm’s effective global search capability as well as the pattern search method’s powerful local search capability. The effectiveness of the recommended CNGPS algorithm is verified through the use of mathematical test functions, and its results are contrasted with those of a conventional NGO and other effective optimization methods. The CNGPS is then used to extract the PV parameters, and the parameter identification is defined as an objective function to be minimized based on the difference between the estimated and experimental data. The usefulness of the CNGPS for extraction parameters is evaluated using three distinct PV models: SDM, DDM, and TDM. The numerical investigates illustrate that the new algorithm may produce better optimum solutions and outperform previous approaches in the literature. The simulation results display that the novel optimization method achieves the lowest root mean square error and obtains better optima than existing methods in various solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:American Institute of Mathematical Sciences (AIMS) Authors: Steven Sherman; Zachary P. Cano; Michael Fowler; Zhongwei Chen;A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS). The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS) powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.1.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.1.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rehan Sadiq; Kasun Hewage; Piyaruwan Perera;Abstract Recharging infrastructure (RI) deployment plays a vital role in improving the public recharging availability for transport electrification. Decarbonizing transportation using low-emission electricity requires massive RI network. Even though the consumers are reluctant to purchase electric vehicles (EVs) until RIs are sufficiently placed, the investors are not willing to invest in RIs due to recharging demand uncertainties. Therefore, a scientific planning framework is needed to ensure the sustainable deployment of EV-RIs in complex networks. In this study, a lifecycle thinking-based multi-period infrastructure-planning framework is proposed to develop sustainable public EV-RIs in an urban context. This framework consists of a temporal model to find the dynamic EV-RI demands, a stochastic model to obtain travel distances, and a multi-objective optimization model to select the best desirable capacities and locations for potential EV-RIs. A case study of a typical medium-scale municipality in Canada was assessed using the proposed framework and validated using conventional infrastructure planning scenarios. The geo-processing data, regional travel behaviors, and recharging characteristics were used as model inputs. The results of the case study showed that the proposed framework can be used to estimate multi-period public recharging demands, minimize lifecycle costs, maximize service coverage and infrastructure utilization, and ensure reasonable paybacks compared to conventional planning approaches. Moreover, this framework can be used to compare different investment assistances, which are required in the early stages of the RI deployment process to encourage investors. Furthermore, government and private institutions can use this framework to identify recharging demands, permitting, and developing RIs in the long-run.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Sommerfeld, Markus;These data sets provide the WRF [1] calculated wind data for Pritzwalk (onshore) and FINO3 (offshore) as Python dictionaries. Additionally, the files contain k-means cluster objects derived from these profiles. These data sets were used for power assessment and design exploration of Airborne Wind Energy Systems using the awebox [2] optimization toolbox. WRF setups are described in detail and used in publication [3,4,5]. Wind data are interpolated to fixed heights of: [10, 28, 50, 70, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 1000, 1200] meters above ground. Onshore wind data: Location lat: 53° 10.78' N; long: 12° 11.35' E Time: 1 September 2015 - 31 August 2016 Timestep: 10 min Offshore wind data: Location lat: 55° 11.7' N, long: 7° 9.5' E Time: 1 September 2013 - 31 August 2014 Timestep: 10 min The clusters are derived from both horizontal wind velocity components using the scikit-learn’s k-means clustering algorithm [6]. For our purposes, wind vectors were rotated such that the main wind speed always points in the same direction (u_main,u_deviation). [1]: Weather Research and Forecasting Model [2]: awebox [3]: Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems [4]: Offshore and onshore ground-generation airborne wind energy power curve characterization [5]:Ground-generation airborne wind energy design space exploration [6]: sklearn.cluster.KMeans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Milovanoff, Alexandre; Posen, I. Daniel; MacLean, Heather L.;This repository contains the raw data of the inputs and results presented in the paper "Electrification of light-duty vehicle fleet alone will not meet mitigation targets" published in Nature Climate Change (2020) by Alexandre Milovanoff, I. Daniel Posen, and Heather L. MacLean (Department of Civil & Mineral Engineering, University of Toronto).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 43visibility views 43 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aashish Gaurav; Chau T.Q. Mai; Flora T. T. Ng; Stéphane Dumas;Production of biodiesel from yellow grease (waste cooking oil and waste animal fats) is fast emerging as a promising alternative to address the twin challenges before the biodiesel industry today-fluctuation in prices of vegetable oil and the food versus fuel debate. Yellow grease has a high percentage of free fatty acids (FFA) and proves to be an unsuitable feedstock for biodiesel production from commercially viable alkali-catalyzed production systems due to saponification problems.“Green” methodologies based on heterogeneous solid acid catalyzed reactions have the potential to simultaneously promote esterification and transesterification reactions of yellow grease to produce biodiesel without soap formation and offer easy catalyst separation without generation of toxic streams. This paper presents kinetic studies for the conversion of model yellow grease feeds to biodiesel using a heteropolyacid supported on alumina (HSiW/Al2O3) using a batch autoclave. Three model yellow grease feeds were prepared using canola oil with added FFA such as palmitic, oleic and linoleic acid. A pseudo homogeneous kinetic model for the parallel esterification and transesterification was developed. The rate constants and activation parameters for esterification and transesterification reactions for the model yellow grease feeds were determined. The rate constants for esterification are higher than the transesterification rate constants. The kinetic model was validated using the experimental biodiesel data obtained from processing a commercial yellow grease feed. The kinetic model could be used to design novel processes to convert various low-value waste oils, fats and non-food grade oils to sustainable biodiesel. Keywords: Yellow grease, Canola oil, Free fatty acids, Heteropolyacid, Kinetics for esterification and transesterification
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2019.03.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:NSERCNSERCFranz Segovia; Pierre Blanchet; Ben Amor; Costel Barbuta; Robert Beauregard;doi: 10.3390/su11082258
The benefits of aluminum lamination in improving the physical and mechanical properties of wood-based composites is now well documented. This paper shows the contribution of life cycle assessment (LCA) as a tool to assess and compare the environmental footprint in the development of laminated panels. SimaPro 9.0 software, using Ecoinvent database was used to analyze the environmental impacts associated with the manufacturing of wood aluminum-laminated (WAL) panels and aluminum honeycomb panel (AHP). The impact 2002+ method was used to estimate environmental impacts. The LCA results show that the WAL panels manufacturing had a lower environmental impact than AHP manufacturing. In term of product, wood-based composites were the best choice as a core in laminated panel manufacturing. Wood-based composite manufacturing showed environmental advantages in all damage categories except in ecosystem quality. Aluminum alloy sheets manufacturing played an important role in the generation of environmental impacts for laminated panel development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11082258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Habib Satria; Rahmad B. Y. Syah; Moncef L. Nehdi; Monjee K. Almustafa; Abdelrahman Omer Idris Adam;doi: 10.3390/su15065027
This article proposes an effective evolutionary hybrid optimization method for identifying unknown parameters in photovoltaic (PV) models based on the northern goshawk optimization algorithm (NGO) and pattern search (PS). The chaotic sequence is used to improve the exploration capability of the NGO algorithm technique while evading premature convergence. The suggested hybrid algorithm, chaotic northern goshawk, and pattern search (CNGPS), takes advantage of the chaotic NGO algorithm’s effective global search capability as well as the pattern search method’s powerful local search capability. The effectiveness of the recommended CNGPS algorithm is verified through the use of mathematical test functions, and its results are contrasted with those of a conventional NGO and other effective optimization methods. The CNGPS is then used to extract the PV parameters, and the parameter identification is defined as an objective function to be minimized based on the difference between the estimated and experimental data. The usefulness of the CNGPS for extraction parameters is evaluated using three distinct PV models: SDM, DDM, and TDM. The numerical investigates illustrate that the new algorithm may produce better optimum solutions and outperform previous approaches in the literature. The simulation results display that the novel optimization method achieves the lowest root mean square error and obtains better optima than existing methods in various solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:American Institute of Mathematical Sciences (AIMS) Authors: Steven Sherman; Zachary P. Cano; Michael Fowler; Zhongwei Chen;A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS). The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS) powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.1.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2018.1.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rehan Sadiq; Kasun Hewage; Piyaruwan Perera;Abstract Recharging infrastructure (RI) deployment plays a vital role in improving the public recharging availability for transport electrification. Decarbonizing transportation using low-emission electricity requires massive RI network. Even though the consumers are reluctant to purchase electric vehicles (EVs) until RIs are sufficiently placed, the investors are not willing to invest in RIs due to recharging demand uncertainties. Therefore, a scientific planning framework is needed to ensure the sustainable deployment of EV-RIs in complex networks. In this study, a lifecycle thinking-based multi-period infrastructure-planning framework is proposed to develop sustainable public EV-RIs in an urban context. This framework consists of a temporal model to find the dynamic EV-RI demands, a stochastic model to obtain travel distances, and a multi-objective optimization model to select the best desirable capacities and locations for potential EV-RIs. A case study of a typical medium-scale municipality in Canada was assessed using the proposed framework and validated using conventional infrastructure planning scenarios. The geo-processing data, regional travel behaviors, and recharging characteristics were used as model inputs. The results of the case study showed that the proposed framework can be used to estimate multi-period public recharging demands, minimize lifecycle costs, maximize service coverage and infrastructure utilization, and ensure reasonable paybacks compared to conventional planning approaches. Moreover, this framework can be used to compare different investment assistances, which are required in the early stages of the RI deployment process to encourage investors. Furthermore, government and private institutions can use this framework to identify recharging demands, permitting, and developing RIs in the long-run.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Sommerfeld, Markus;These data sets provide the WRF [1] calculated wind data for Pritzwalk (onshore) and FINO3 (offshore) as Python dictionaries. Additionally, the files contain k-means cluster objects derived from these profiles. These data sets were used for power assessment and design exploration of Airborne Wind Energy Systems using the awebox [2] optimization toolbox. WRF setups are described in detail and used in publication [3,4,5]. Wind data are interpolated to fixed heights of: [10, 28, 50, 70, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 1000, 1200] meters above ground. Onshore wind data: Location lat: 53° 10.78' N; long: 12° 11.35' E Time: 1 September 2015 - 31 August 2016 Timestep: 10 min Offshore wind data: Location lat: 55° 11.7' N, long: 7° 9.5' E Time: 1 September 2013 - 31 August 2014 Timestep: 10 min The clusters are derived from both horizontal wind velocity components using the scikit-learn’s k-means clustering algorithm [6]. For our purposes, wind vectors were rotated such that the main wind speed always points in the same direction (u_main,u_deviation). [1]: Weather Research and Forecasting Model [2]: awebox [3]: Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems [4]: Offshore and onshore ground-generation airborne wind energy power curve characterization [5]:Ground-generation airborne wind energy design space exploration [6]: sklearn.cluster.KMeans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Milovanoff, Alexandre; Posen, I. Daniel; MacLean, Heather L.;This repository contains the raw data of the inputs and results presented in the paper "Electrification of light-duty vehicle fleet alone will not meet mitigation targets" published in Nature Climate Change (2020) by Alexandre Milovanoff, I. Daniel Posen, and Heather L. MacLean (Department of Civil & Mineral Engineering, University of Toronto).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 43visibility views 43 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu